You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Acoustic Pattern Recognition for Security Breaching Noise Detection

    SBC: SCIENTIFIC APPLICATIONS & RESEARCH ASSOCIATES, INC.            Topic: N06T036

    A proposed acoustic pattern recognition system will be based around an array of acoustic sensors to allow localization of sound events and cancellation of background noise. The number of sensors could be adjusted to vary the coverage area depending on the site. The measured signals will provide the input to a sophisticated signal processing algorithm that will separate the acoustic signals into ...

    STTR Phase I 2006 Department of DefenseNavy
  2. Adaptive and Smart Materials for Advanced Manufacturing Methods

    SBC: NEXTGEN AERONAUTICS, INC.            Topic: AF17AT018

    The focus of this STTR program is the development and maturation of a novel, room-temperature process to fabricate multi-layer metal-polymer (including PVDF and other smart materials) composites in an additive approach. This overcomes the limitation arising from the large temperature difference between metal and polymer manufacturing processes, and presents a new technology for additive manufactur ...

    STTR Phase II 2019 Department of DefenseAir Force
  3. Adaptive Space-Time Radar Techniques and Waveforms

    SBC: CHIRP CORP.            Topic: N04T007

    The problem is to improve airborne maritime radar detection of small moving targets in clutter, where the clutter varies with time, range, azimuth, sea state, grazing angle, wind speed, and the look direction of the radar relative to the wind direction. A new version of space-time adaptive processing (STAP) is applied to the problem. The new technique provides improved covariance estimation for ...

    STTR Phase II 2006 Department of DefenseNavy
  4. Advanced Antenna Pattern Prediction Software

    SBC: MATHEMATICAL SYSTEMS & SOLUTIONS, INC.            Topic: AF05T018

    The present text proposes development of a software infrastructure for the prediction of antenna patterns on and around aircraft, for frequencies throughout the electromagnetic spectrum - including UHF through L bands as well as arbitrarily high frequencies - and applicable to aircraft which, like those designed for low observability, contain non perfectly conducting surface materials. Relying on ...

    STTR Phase II 2006 Department of DefenseAir Force
  5. Advanced Command and Control Architectures for Autonomous Sensing

    SBC: TOYON RESEARCH CORPORATION            Topic: N18BT030

    We propose to develop an innovative open architecture for the semi-autonomous command and control (C2) of teaming Unmanned Aircraft Systems (UAS). The proposed architecture, based upon Toyon’s Decentralized Asset Management system, supports both centralized and decentralized fusion and control autonomy solutions as well as hybrids approaches. Leveraging STANAG-4586, TCP/IP, UPD, Google™ protob ...

    STTR Phase I 2019 Department of DefenseNavy
  6. Advanced Diagnostic for Performance and Combustion Characterization in Rotational Detonation Rocket Engine (RDRE)

    SBC: Exo-Atmospheric Technologies LLC            Topic: AF19AT011

    Rotating Detonation Rocket Engines (RDRE)are being developed to take advantage of the near instantaneous heat release potential of detonation waves versus conventional deflagration-based chemical reactions in combustion applications. However, the detonation product environment is extreme and current instrumentation to measure wall / surface conditions within the detonation chamber are lacking. The ...

    STTR Phase I 2019 Department of DefenseAir Force
  7. Advanced Flywheel Energy Storage for Pulsed Power Applications

    SBC: CALNETIX            Topic: N04T013

    During the NAVY STTR Phase II Calnetix will further develop its concept of advanced flywheel system proposed in Phase I and will demonstrate the validity of the underlying principles through building and testing a system prototype. This prototype will be a fully functional system capable of supporting up to 2MW of pulse power with the ability of producing 500kW (30 seconds) loads in high-duty-cyc ...

    STTR Phase II 2006 Department of DefenseNavy
  8. Advanced Infrared (IR) Sensor Components for Missile Defense

    SBC: NANO LIGHT            Topic: MDA06T011

    The objective of this proposal is to further explore PbSnSe detector array on Si substrate. Two approaches are proposed. One is a zero-risk incremental advance that employs a new growth condition to reduce the dislocation density. Another approach is a novel fabrication technique with high-risk but it could enable revolutionary rather than evolutionary advances. IV-VI semiconductors such as Pb1-x ...

    STTR Phase I 2006 Department of DefenseMissile Defense Agency
  9. Advanced Multisensor Fused Track and Discrimination Architecture

    SBC: DECIBEL RESEARCH, INC.            Topic: MDA06T003

    This effort proposes to design and demonstrate the concept of an innovative, Advanced BMDS Multisensor Fused Track and Discrimination Architecture that will enhance the generation of a Single Integrated Picture of the Battlespace. This Architecture permits enhancement of sensor-to-sensor track correlation handover of objects while characterizing their lethality for later target designation purpos ...

    STTR Phase I 2006 Department of DefenseMissile Defense Agency
  10. Advanced Radar Data Fusion

    SBC: Technology Service Corporation            Topic: MDA06T003

    The TSC team proposes to develop a new generalized Space-Time Adaptive Processing (Generalized STAP) algorithm that discriminates among classes of scatterers. The new generalized formalism is applied to the problem of 3D ISAR imaging of the reentry vehicle (RV) or another object in the ballistic missile threat complex that suppresses radar dipole clutter, using multiple ground-based radars operat ...

    STTR Phase I 2006 Department of DefenseMissile Defense Agency
US Flag An Official Website of the United States Government