You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Verification and Validation of Algorithms for Resilient Complex Software Controlled Systems

    SBC: XL SCIENTIFIC LLC            Topic: AF17CT05

    Verification of the Guidance, Navigation and Control (GN&C) algorithms and software utilized onboard spacecraft is of paramount importance to ensure resilient, correct operation after launch. Rather than wait until the GN&C software has been deployed to perform on-orbit verification, offline verification integrated into the design process will improve mission performance, significantly reduce the ...

    STTR Phase I 2018 Department of DefenseAir Force
  2. Oxygen Production and Delivery on Demand

    SBC: GLOBAL RESEARCH & DEVELOPMENT INC            Topic: DHA17B005

    This proposal is in response to the Defense Health Agency 2017 Phase I SBIR topic 17B-005.The approach is the use of a membrane oxygen pump using newly developed nano-thickness membranes with all the layers less than 1 micron total.Nanometer thickness membranes enable more oxygen output per surface area at temperatures of 300-600 C than current state-of-the -art 600-800 C membranes that are 50-300 ...

    STTR Phase I 2018 Department of DefenseDefense Health Agency
  3. Additive Manufacturing of Metallic Materials for High Strain Rate Applications

    SBC: MRL MATERIALS RESOURCES LLC            Topic: MDA17T001

    Metallic additive manufacturing (AM) is an attractive technology for the production of lethality test articles due to the potential for significantly reduced lead time and manufacturing cost.However, in order to be effective in providing accurate lethality data, the properties of the AM material have to match closely the properties of conventionally manufactured alloys found in real threat targets ...

    STTR Phase I 2018 Department of DefenseMissile Defense Agency
  4. Compact Thermal Management System for Laser Systems

    SBC: SPECTRAL ENERGIES LLC            Topic: N18AT001

    The use of laser technologies and high-power electronics is rapidly being incorporated into tactical platforms for imaging, target designation, and range finding. Electronic equipment including lasers demand power from a tactical aircraft and produce large amounts of thermal energy as a waste product. Current thermal management technologies will not be sufficient for future aircraft as thermal man ...

    STTR Phase I 2018 Department of DefenseNavy
  5. Environmental Temperature Sensing Tow Cable

    SBC: MAKAI OCEAN ENGINEERING INC            Topic: N18AT017

    The U.S. Navy currently utilizes a number of towed systems from surface ship and submarines for sensing and communication applications. In a number of these cases, a tow cable extends either down from a surface ship or up from a submarine through the upper part of the water column where seawater temperature can be both highly variable vs. depth and dynamic in time and geographic location. Having a ...

    STTR Phase I 2018 Department of DefenseNavy
  6. High Throughput Static and Dynamic Testing of AM Materials for Uncertainty Quantification and Qualification

    SBC: MRL MATERIALS RESOURCES LLC            Topic: N18AT028

    Qualification of additively manufactured parts is hampered by the inherent uncetainty in properties due to heterogeneity in processing, microstructure, and defects. The proposed effort combines high-throughput testing of static and dynamic properties using tailored sample geometry, fixture design, and load application method with microstructure quantification and analysis. This system will drastic ...

    STTR Phase I 2018 Department of DefenseNavy
  7. Optical Cryocooling for Precision Metrology

    SBC: ThermoDynamic Films LLC            Topic: AF10BT02

    Optical cryocoolers, which are compact and produce no vibrations, are ideal for many electronics and sensor applications. In particular, some advanced metrology systems require cooling to around 124 K, the temperature at which the coefficient of thermal expansion for crystalline silicon goes through a null point. Currently, the dominant solid-state cooling technology is thermoelectric cooling, whi ...

    STTR Phase II 2018 Department of DefenseDefense Advanced Research Projects Agency
  8. Proactive Risk Monitoring Using Predictive Analytics

    SBC: ARCTOS Technology Solutions, LLC            Topic: MDA16T002

    Presently the missile defense systems are using a reactive and program-centric framework for assessing industrial base risk. The Phase I effort focused on developing a wide and deep network algorithm using Industrial Product-Support Vendor (IPV) Gen II program for predicting the probability of failure. The proposed Phase II effort leverages the Phase I work and will focus on three main goals:(1) I ...

    STTR Phase II 2018 Department of DefenseMissile Defense Agency
  9. Novel Separator Materials for Achieving High Energy/Power Density, Safe, Long-Lasting Lithium-ion Batteries for Navy Aircraft Applications.

    SBC: OCEANIT LABORATORIES INC            Topic: N16AT008

    Oceanit proposes to develop and demonstrate novel, tailored, designer separator materials with optimized properties to maximize lithium-ion cell/battery performance, life, safety and reliability.

    STTR Phase II 2018 Department of DefenseNavy
  10. Detection of Radio Frequency and Magnetic Field Bioeffects in Living Cells

    SBC: SOUTHWEST SCIENCES INC            Topic: AF18AT001

    Radio frequency communications and sensors are everywhere in both personal and military life. RF fields are also used in some medical therapies. However, little is known about the medical effects that result from the routine exposure of tissue to RF fields. To understand such effects, new instrumentation is needed that can quantify the RF radiation amplitude with spatial resolution comparable to t ...

    STTR Phase I 2018 Department of DefenseAir Force
US Flag An Official Website of the United States Government