You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. EOIR Debris Management during ascent phase for C2BMC

    SBC: APPLIED MATHEMATICS, INC.            Topic: MDA12T004

    We propose to develop algorithms to improve debris management for electro-optical/infrared sensors (EO/IR) within C2BMC. Our goal is to improve fire control solutions, increase the quality of communicated sensor information, and reduce communication demands. We characterize the pre-intercept debris field mathematically by expressing the debris fields viewed on the sensor"s focal plane as 2D elli ...

    STTR Phase I 2013 Department of DefenseMissile Defense Agency
  2. Near Real-Time Quantification of Stochastic Model Parameters

    SBC: APPLIED MATHEMATICS, INC.            Topic: A13AT009

    Mathematical models of physical and biological systems contain parameters that need to be estimated from measured data. Models with parameters distributed probabilistically require the estimates of a probability measure over the set of admissible parameters. We propose to use frequentist-based approaches for non-parametrically estimating probability measures that describe the distribution of par ...

    STTR Phase I 2013 Department of DefenseArmy
  3. Wide Spectral Band Laser Threat Sensor

    SBC: OCEANIT LABORATORIES INC            Topic: N13AT027

    We propose a solution to the Navy"s laser weapons warning problem. The proposed solution employs a combined approach of extending the wavelength spectrum and dynamic range of current State of the Art laser warning systems. The proposed wide optical bandwidth will be achieved by adapting previously developed methods. The system will exploit on going design work created for visible multi-threat opti ...

    STTR Phase I 2013 Department of DefenseNavy
  4. Synthesis of New, Insensitive Energetic Materials

    SBC: Orbital Technologies Corporation            Topic: N11AT034

    Advanced ordnance and propulsion systems utillize materials, such as RDX and HMX, that provide good performance but cannot meet todays more stringent safety and environmental requirements. Unfortunately, in newer compounds created to replace them, the performance falls with the sensitivity. The ORBITEC team proposes the development of new energetic materials that will be both high performance and ...

    STTR Phase II 2013 Department of DefenseNavy
  5. Liquid Crystal-based Sensors for Detection of Airborne Toxic Chemicals for Integration with Unmanned Robotic Systems

    SBC: Platypus Technologies, LLC            Topic: A13AT004

    We aim to develop lightweight and rugged liquid crystal (LC)-based sensors suitable for integration into small unmanned vehicles, including hand-launched UAVs and throwable robots. For Phase I proof of concept, we propose to develop sensors that detect DMMP, H2S, NO2 and NH3. These gases include simulants of chemical warfare agents and toxic industrial chemicals, selected for their relevance to ...

    STTR Phase I 2013 Department of DefenseArmy
  6. Surface-Emitting, Monolithic Beam-Combined Mid-Wave IR Quantum Cascade Lasers

    SBC: INTRABAND, LLC            Topic: N13AT006

    The technical objectives of this proposal are: (1) design a grating-coupled surface-emitting (GCSE) active-photonic-crystal (APC) 4.6 micron-emitting quantum-cascade laser (QCL) to deliver 15 W diffraction-limited CW power in the main lobe of the far-field beam pattern; (2) design a GCSE-APC QCL structure with monolithic aperture-filling optical elements for obtaining close to 90 % of the surface- ...

    STTR Phase I 2013 Department of DefenseNavy
  7. Monolithic Scalable Mid-Infrared Phase-Locked Laser Array

    SBC: INTRABAND, LLC            Topic: N11AT011

    The technical objectives of this proposal are: 1) Design a metal/semiconductor grating-based (i.e., substrate-emitting) Grating-Coupled Surface-Emitting Distributed Feedback Quantum Cascade Laser (GCSE-DFB QCL) emitting at 4.6 microns with high beam quality; and 2) Demonstrate a GCSE-DFB QCL emitting at 4.6 microns with single-lobe-beam operation and high beam quality, under CW operation. It is th ...

    STTR Phase II 2013 Department of DefenseNavy
  8. Dive Helmet Noise Quieting

    SBC: OCEANIT LABORATORIES INC            Topic: N12AT020

    Helmeted navy divers are exposed to high levels of noise from self-generated mechanisms, such as regulator exhaust, and external sources, such as underwater tool-generated noise. Noise exposure limits can be easily exceeded especially if effective communications through helmet-mounted speakers is required. A multi-faceted approach is proposed to reduce self-generated noise as well as overall helme ...

    STTR Phase II 2013 Department of DefenseNavy
  9. Roll-to-Roll Printing of Patterned Nanomembranes on Flexible Substrates

    SBC: SysteMECH, Inc            Topic: OSD10T005

    Flexible electronic and optical devices, including sensors/detectors, waveguides, and photonic crystal structures, have significant promise for improving communication and information processing capabilities in a number of military and commercial applications. However, the development of such flexible devices has been hindered by the lack of effective manufacturing processes for producing these de ...

    STTR Phase II 2013 Department of DefenseAir Force
  10. Smart Tether for Relative Localization of Moored and Towed Bodies

    SBC: Applied Physical Sciences Corp.            Topic: N04T020

    Determining a geo-reference of an underwater object is a critical requirement for marine applications such as mine-hunting and marine surveying. Although a GPS fix can be obtained at the surface, the watch circle of a tether connecting a surface and underwater body can impose positional errors that are far greater than GPS errors. Here we propose to develop a technology to automatically determin ...

    STTR Phase I 2004 Department of DefenseNavy
US Flag An Official Website of the United States Government