You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Multi-Function Fluid Measurement System using High-Definition Fiber Optic Sensing

    SBC: LUNA INNOVATIONS INCORPORATED            Topic: T13

    Propulsion systems require rigorous and highly instrumented testing to enable a comprehensive analysis of performance and to minimize risks associated with space flight. Current testing instrumentation methods can be replaced with embedded sensor systems that are used for monitoring remote, hazardous, or inaccessible locations, while reducing cabling and power consumption. The additional informati ...

    STTR Phase I 2018 National Aeronautics and Space Administration
  2. Si-Based Lab-on-A-Chip Integrated Photonic Spectrometer

    SBC: STRUCTURED MATERIALS INDUSTRIES, INC.            Topic: T8

    In this STTR Phase I program, Structured Materials Industries, Inc. (SMI) and Arizona State University (ASU) will develop a SiGeSn based light emitter device technology on Si, which will be a key ingredient for Si-based integrated photonics applications, such as in lab-on-a-chip integrated chemical and biological spectrometers for landers, astronaut health monitoring, front-end and back-end for re ...

    STTR Phase I 2018 National Aeronautics and Space Administration
  3. Coordination of Heterogeneous Robot Swarms for Planetary Logistics Operations

    SBC: VECNA TECHNOLOGIES, INC            Topic: T4

    Swarm robotics is one of the key enabling technologies for significantly extending mankind's reach beyond the Earth's surface. However, when bringing theory to practice, challenging problems related to the coordination and control of these swarms quickly arise. Vecna Robotics proposes a collaboration with MIT to extend existing autonomy behaviors and test platforms to address a class of pl ...

    STTR Phase I 2018 National Aeronautics and Space Administration
  4. A Supported Liquid Membrane System for Steady State CO2 Control in a Spacecraft Cabin

    SBC: REACTION SYSTEMS, INC.            Topic: T6

    Reducing the allowable concentration of carbon dioxide (CO2) in spacecraft is a critical need for NASA. The system now used on the International Space Station (ISS) is the carbon dioxide removal assembly (CDRA). While it has performed well on the ISS, managers have concluded that using the device to reach the new ppCO2 limit of 2.0 mm Hg is not practical and a new method is needed.In this projec ...

    STTR Phase I 2018 National Aeronautics and Space Administration
  5. Multiscale Design Tool and Process Development of Thin-Ply Composites

    SBC: TECHNICAL DATA ANALYSIS, INC.            Topic: T12

    Use of thin ply composites offers good potential for significant mass savings for aerospace structures besides its improved resistance to micro-cracking, fatigue, and delamination. However, mass savings due to thin-ply technology depends on material and fabrication technology, vehicle configuration, structural design, loads etc. Structural integrity of components made from thin plies need to be c ...

    STTR Phase I 2018 National Aeronautics and Space Administration
  6. Aeroservoelastic Multifidelity Design of Biomimetic Aircraft (AMuBA)

    SBC: Intelligent Automation, Inc.            Topic: T15

    NASA has been investigating morphing aircraft for multi-mission capabilities and performance improvements in existing fixed-wing aircraft. In addition, the design of aeroelastic aircraft that can control the structural flexibility to their advantage, is an open area of research and development. In spite of the plethora of work on morphing aircraft and long slender wings, the goal of fielding such ...

    STTR Phase I 2018 National Aeronautics and Space Administration
  7. Additive Manufacture of Refractory Metal Propulsion Components

    SBC: GEOPLASMA LLC            Topic: T9

    Niobium alloy (C-103) reaction control system (RCS) chambers have been used on numerous NASA programs. However at elevated temperatures, the strength of C-103 decreases significantly. Higher strength niobium alloys have been developed, but these alloys lack the formability of C-103. Recently, Additive Manufacture (AM) of niobium and C-103 has been demonstrated using powder bed electron beam me ...

    STTR Phase I 2018 National Aeronautics and Space Administration
  8. Validated Engineering Tools for Thin-Ply Composites

    SBC: OPTERUS RESEARCH AND DEVELOPMENT, INC            Topic: T12

    Opterus Research and Development, Inc. proposes to develop and validate multi-scale thin-ply High Strain Composites (HSCs) constitutive modeling tools for incorporation into commercial finite element analysis codes. The constitutive models will capture the time-temperature-load-deformation viscoelastic characteristics common to HSCs as well as the yielding or permanent deformation associated with ...

    STTR Phase I 2018 National Aeronautics and Space Administration
  9. Wireless Networked Cryogenic and Minimum Pressure Sensors

    SBC: NANOSONIC INC.            Topic: T13

    This NASA Phase I STTR program would develop high performance, wireless networked cryogenic and minimum pressure sensors for remote monitoring in propulsion systems, using SOI (Silicon on Insulator) NM (nanomembrane) techniques in combination with our pioneering ceramic nanocomposite materials. We will improve the current mechanical and electrical model of semiconductor nanomembrane based sensor ...

    STTR Phase I 2018 National Aeronautics and Space Administration
  10. Prediction of Plume Induced Rock Fracture for Landers

    SBC: CFD RESEARCH CORPORATION            Topic: T9

    The landing surface damage and liberation of debris particles caused by rocket plume impingement flow during spacecraft propulsive landing on unprepared surfaces of Moon, Mars, and other celestial bodies poses a high risk for robotic and human exploration activities. Simply determining whether the plume induced loads exceed the bedrock bearing capacity threshold is not sufficient. An integrated m ...

    STTR Phase I 2018 National Aeronautics and Space Administration
US Flag An Official Website of the United States Government