You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. STTR Phase I:Structural properties of carbon nanotube polymer composites

    SBC: BOULDER NONLINEAR SYSTEMS, INC.            Topic: MM

    This Small Business Technology Transfer Phase I project will develop a new system for fabrication and manipulation of carbon nanotube (CNT) composites. The system will use holographic optical trapping (HOT) with a spatial light modulator (SLM) and a new form of nano-controlled photo-polymerization. This tool will allow the creation of a new class of carbon-nanotube polymer composite materials wit ...

    STTR Phase I 2010 National Science Foundation
  2. STTR Phase I: Design, Fabrication and Characterization of Ferroelectric Nanoparticle Doped Liquid Crystal/Polymer Composites

    SBC: MEADOWLARK OPTICS, INC.            Topic: MM

    This Small Business Technology Transfer Phase I project will address the critical need for low driving voltage, adaptive materials providing large phase retardation (for ultraviolet, visible, and infrared wavelengths) within a sub-millisecond time frame. Two technologically innovative tasks will be pursued in parallel and then merged, resulting in the creation of a new class of optical materials - ...

    STTR Phase I 2010 National Science Foundation
  3. STTR Phase I: Low Cost, High Efficiency Photovoltaics

    SBC: Ampulse Corporation            Topic: MM

    This Small Business Technology Transfer (STTR) Phase I project aims to develop roll-to-roll processing of highly efficient, thin film photovoltaics on inexpensive polycrystalline substrates. The innovation lies in an architecture that yields near-single-crystalline thin films even on polycrystalline substrates. This innovation will be combined with the benefits of hot wire chemical vapor deposit ...

    STTR Phase I 2010 National Science Foundation
  4. STTR Phase I: Up-Cycling: Waste Acid for Green Products

    SBC: Clear Carbon Innovations            Topic: MM

    This STTR Phase I project will develop a process to produce silica products from the waste stream of a patent pending activated carbon manufacturing process (carbonxt process). The project focuses on using the silica for Silica-Titania Composites but would also take into account markets that employ precipitated or gel silica which would have differing properties than the silica used in Silica-Tit ...

    STTR Phase I 2010 National Science Foundation
  5. STTR Phase I: Low-cost naostructured anti-reflection coatings for solar energy applications

    SBC: CSD Nano            Topic: MM

    This Small Business Technology Transfer (STTR) Phase I project aims to fabricate anti-reflective coatings (ARC) for solar energy applications. The approach is to use a convective and evaporation-induced assembly to deposit organized nanostructures and create sub-wavelength quasi repeating structures at lower cost than the repeating structures from photolithography. In this project, a Microreacto ...

    STTR Phase I 2010 National Science Foundation
  6. STTR Phase II: Matching the timing of renewable energy production with patterns of electricity demand

    SBC: HOMER Energy            Topic: EO

    This Small Business Technology Transfer (STTR) Phase II project will transform the Hybrid Optimization Model for Electric Renewables (HOMER

    STTR Phase II 2010 National Science Foundation
  7. STTR Phase I: Overcoming Metabolic Pathway Limitations through De Novo Pathway Design for Terpenoid Biosynthesis

    SBC: MANUS BIOSYNTHESIS, INC.            Topic: EB

    This Small Business Innovation Research (STTR) Phase I project aims to develop a novel, high flux terpenoid precursor pathway by circumventing limitations of the bacterial methyl erythritol-phosphate (MEP) pathway for the renewable production of monoterpenoids. Monoterpenoids are natural chemical precursors for several consumer products, and many are produced via highly polluting chemical processe ...

    STTR Phase I 2013 National Science Foundation
  8. STTR Phase I: STTR Proposal on Atmospheric Water Capture using Advanced Nanomaterials

    SBC: NBD NANOTECHNOLOGIES INC.            Topic: AS

    This Small Business Technology Transfer Research (STTR) Phase I project aims to significantly enhance water condensation heat transfer through the application of patterned surface coatings. These patterned coatings are expected to reduce unnecessary energy consumption caused by film-wise condensation mechanisms, typical in modern condenser systems. Instead, the proposed surfaces promote sustained ...

    STTR Phase I 2013 National Science Foundation
  9. STTR Phase I: Autonomous Electrochromic Windows Enabled by Visibly Transparent Energy Harvesting Coatings

    SBC: Ubiquitous Energy, Inc            Topic: AS

    This Small Business Technology Transfer Phase I project explores an autonomous electrochromic (EC) window enabled by a visibly transparent photovoltaic coating technology. EC windows, which transition from a transparent state to a dark state (and vice-versa) based on an electrical input, represent a promising pathway to increasing building energy efficiency by effectively regulating the solar flux ...

    STTR Phase I 2013 National Science Foundation
  10. STTR Phase I: Physics-based models of wind variability

    SBC: Enduring Energy, LLC            Topic: AS

    This Small Business Technology Transfer Research (STTR) Phase I project aims to develop quantitative models of wind variability to aid the design of reliable, low-carbon electric grid systems with high wind penetration. All abundant renewable resources are naturally variable, creating a challenge for their integra¬tion onto an ?always on? electric grid. While this variability challenge is now beg ...

    STTR Phase I 2013 National Science Foundation
US Flag An Official Website of the United States Government