You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY21 is not expected to be complete until September, 2022.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. STTR Phase I: Wireless High Temperature Sensor for Real Time Monitoring of Power Generation Turbine Engines

    SBC: Sensatek Propulsion Technology, Inc.            Topic: MI

    This Small Business Innovation Research Phase I project is for the development of a wireless sensor for continuous and real-time measurement of the high temperature in gas turbines. The new sensor offers turbine manufacturers and owners/operators the capability to place small-sized sensors in hard to reach areas in the turbine, and transmit sensed data wirelessly thereby enabling heat loads to be ...

    STTR Phase I 2018 National Science Foundation
  2. STTR Phase I: Microscope-based Technology For Automatic Brain Cell Counts Using Unbiased Methods

    SBC: Stereology Resource Center, Inc            Topic: BM

    The broader impact/commercial potential of this Small Business Technology Transfer (STTR) Phase I project is in automating the process of unbiased stereology, the state-of-the-method used in the life sciences for counting stained cells on tissue sections. Unbiased stereology allows neuroscientists to accurately analyze the size and number of brain cells, which are altered in many neurological diso ...

    STTR Phase I 2018 National Science Foundation
  3. STTR Phase I: Rational design of highly sensitive and selective chemical sensors using structural color

    SBC: DrinkSavvy, Inc.            Topic: BT

    The broader impact/commercial potential of this Small Business Technology Transfer (STTR) project will be the development of sensor-embedded "smart" drinkware (i.e., stirrers, straws and cups) to actively alert consumers prior to consumption of a "spiked" beverage, and thus provide a proactive way to prevent drug-facilitated sexual assault. This sensor technology is based on "smart" molecularly im ...

    STTR Phase I 2018 National Science Foundation
  4. Low-Cost Diagnostic Platform for Rapid Biochemical Detection

    SBC: Triton Systems, Inc.            Topic: DHA17B004

    Triton Systems will develop a novel approach to field-based disease and biochemical diagnostics through innovative use of extremely low cost bioanalytical devices.The proposed platform will provide a low cost, portable, and reliable diagnostic test for on-site use in austere and resource-limited environments.The devices will be highly durable, rugged, and easy to use without user-induced variation ...

    STTR Phase I 2018 Department of DefenseDefense Health Agency
  5. AeroQUEST: Aeromedical Quantified Understanding via Experimental Standards Toolkit

    SBC: Aptima, Inc.            Topic: DHA17C001

    Adverse physiological events (PEs) have plagued warfighters piloting military aircraft, in particular PEs involving hypoxia and cockpit cabin decompression. Though there has been a large variety of research performed in trying to understand the problems and why theyre caused, there are inefficiencies due to the lack of standardized cross-laboratory protocols, procedures, and metrics. To address th ...

    STTR Phase I 2018 Department of DefenseDefense Health Agency
  6. STTR Phase I: Low-Cost, High-Purity Biobased Glucaric Acid

    SBC: KALION, INC.            Topic: BT

    The broader impact/commercial potential of this Small Business Technology Transfer(STTR) project is to develop a bio-based manufacturing process for glucaric acid and its intermediate, glucuronic acid. Microbial fermentation represents an attractive option for production of fuels and valuable chemicals from renewable resources, and glucaric acid can be produced from glucose, a renewable biomass-de ...

    STTR Phase I 2018 National Science Foundation
  7. Circulating Diagnostic Markers of Infectious Disease

    SBC: PATHOVACS INCORPORATED            Topic: CBD18A001

    The focus of this STTR phase I component is on proof-of-concept studies demonstrating applicability of technical approaches for identificationof circulatory diagnostic markers for infectious disease. Therefore, the primary objective of this project is to determine feasibility of one suchtechnical approach called Proteomics-based Expression Library Screening (PELS), for identification of pathogen-d ...

    STTR Phase I 2018 Department of DefenseOffice for Chemical and Biological Defense
  8. Novel Circulating RNA-based Markers as Diagnostic Biomarkers of Infectious Diseases

    SBC: CFD Research Corporation            Topic: CBD18A001

    In resource limited settings, rapid and accurate diagnosis of infections is critical for managing potential exposures to highly virulent pathogens,whether occurring from an act of bioterrorism or a natural event. This is especially important for hard to detect intracellular bacterial andalphavirus infections, that overlap symptomatically and often treated empirically due to a lack of reliable and ...

    STTR Phase I 2018 Department of DefenseOffice for Chemical and Biological Defense
  9. Underwater Blast Injury Monitoring

    SBC: Triton Systems, Inc.            Topic: DHA17C002

    Triton Systems, Inc. proposes to develop a piezo-textile that can capture underwater explosion pressure wave patterns to ultimately establish and monitor for injury risk severity. We propose to use a state-of-the-art piezo-textile to which we will apply our own proprietary treatments.We will assess our textiles pressure detection performance and durability against a non-textile piezoelectric array ...

    STTR Phase I 2018 Department of DefenseDefense Health Agency
  10. Characterization of Piezoelectric Fibers for Sensing Shock Waves from Underwater Explosions

    SBC: ADVANCED MATERIALS AND DEVICES            Topic: DHA17C002

    This Small Business Technology Transfer (STTR) Phase I effort will demonstrate the feasibility of using piezoelectric fibers to detect shock waves from underwater explosions (UNDEX) and sensing physiological measures such as heart and respiratory rates on warfighters. Piezoelectric fibers will be characterized for their ability so sense different amplitudes and frequencies of shock and vibration. ...

    STTR Phase I 2018 Department of DefenseDefense Health Agency
US Flag An Official Website of the United States Government