You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. IA 2: Intent-Capturing Annotations for Isolation and Assurance

    SBC: Immunant, Inc.            Topic: HR001120S0019001

    Software and hardware flaws can be exploited to make programs perform unintended computations or leak sensitive data. We propose to counter these threats by isolating libraries and other program units inside a single process. The developer will insert source-level annotations that i) map code and data units to compartments and ii) capture how each compartment is intended to interact with others, i ...

    STTR Phase I 2020 Department of DefenseDefense Advanced Research Projects Agency
  2. Comfortable, Easy-To-Fit, Deep-Insert Earplug

    SBC: PAXAURIS LLC            Topic: DHA19C001

    Effective hearing protection is essential for service members who work in hazardous noise environments and for whom permanent or even temporary hearing damage affects performance, endangers lives, and reduces quality of life. Various devices have been developed to attenuate high levels of impulse and continuous noise while allowing low-level sounds to pass through. However, issues with comfort, ea ...

    STTR Phase I 2020 Department of DefenseDefense Health Agency
  3. Visual Relative Navigation

    SBC: TOYON RESEARCH CORPORATION            Topic: ST18C006

    As unmanned aircraft systems (UAS) become more prevalent there is an increasing desire to automate UAS navigation and control. To enable future UASs to perform a wider variety of missions, they must be able to complete autonomous relative navigation to accomplish missions. Current technologies rely heavily on GPS measurements, which are undesirable since GPS signals may be unavailable in many DoD ...

    STTR Phase II 2020 Department of DefenseDefense Advanced Research Projects Agency
  4. Pathogen Classification Tool (PACT)

    SBC: STOTTLER HENKE ASSOCIATES, INC            Topic: ST18C002

    Stottler Henke proposes PACT to address the threat posed by unknown/novel bacteria. Stottler Henke’s solution leverages AI/ML technologies to assess the pathogenic potential of unknown/novel bacteria for DARPA’s Biological Technologies Office. Threat assessment is inferred from phenotype as characterized by a series of assays developed by Harvard University as part of DARPA’s Friend or Foe p ...

    STTR Phase II 2020 Department of DefenseDefense Advanced Research Projects Agency
  5. Hardened, Optically-Based Temperature Characterization of Detonation Environments

    SBC: SA PHOTONICS, LLC            Topic: DTRA19B001

    Improving the effectiveness of counter-WMD operations requires improved understanding of weapon-target interaction. Specifically, time-resolved measurements of temperature and composition are required to allow temporal evolution of a detonation fireball. To address this need, SA Photonics will develop MONITOR, a laser-based temperature diagnostic that will enable wide dynamic range temperature mea ...

    STTR Phase I 2020 Department of DefenseDefense Threat Reduction Agency
  6. Hardened, Optically-Based Temperature Characterization of Detonation Environments

    SBC: IRGLARE LLC            Topic: DTRA19B001

    A novel diagnostic system based on the monolithic quantum cascade laser technology is proposed, enabling probing of points across the entire MIR absorption spectrum of CO for optimal temperature sensitivity across the entire 300 – 3000 K range with MHz time resolution. The proposing team has the capability to design QCL structures that provide strong output over the spectral range of interest in ...

    STTR Phase I 2020 Department of DefenseDefense Threat Reduction Agency
  7. Development of powder bed printing (3DP) for rapid and flexible fabrication of energetic material payloads and munitions

    SBC: MAKEL ENGINEERING, INC.            Topic: DTRA16A001

    This program will demonstrate how additive manufacturing technologies can be used with reactive and high energy materials to create rapid and flexible fabrication of payload and munitions. Our primary approach to this problem will be to use powder bed binder printing techniques to print reactive structures. The anticipated feedstock will consist of composite particles containing all reactant spe ...

    STTR Phase I 2016 Department of DefenseDefense Threat Reduction Agency
  8. Modular Pulse Charger and Laser Triggering System for Large-Scale EMP and HPM Applications

    SBC: SCIENTIFIC APPLICATIONS & RESEARCH ASSOCIATES, INC.            Topic: DTRA16A004

    For effective protection against EMP and HPM threats, it is important to understand the physics of the threats, and also to quantify the effects they have on electrical systems. EMP and HPM vulnerability testing requires delivery of high peak power and electric fields to distant targets. The most practical solution to simulate such environments is to develop a modular, optically-isolated MV-antenn ...

    STTR Phase I 2016 Department of DefenseDefense Threat Reduction Agency
  9. High Fidelity Computational Models for Aggregated Tissue Interaction in Surgical Simulations

    SBC: CFD RESEARCH CORPORATION            Topic: DHP16A001

    Surgical simulations aiming to support surgeon practices and medical education have attracted enormous research effort over the last two decades. However, the physical reality, especially on simulating aggregated tissue interaction, is still unsatisfactory. In this proposed work, an open source surgery simulation framework, SoFMIS, will be utilized and enhanced with tissue interaction models to a ...

    STTR Phase I 2016 Department of DefenseDefense Health Agency
  10. Analog Co-Processors for Complex System Simulation and Design

    SBC: Arete Associates            Topic: ST15C002

    It has long been known that analog computers can be faster and more power efficient than digital processors by many orders of magnitude. Until the 1970s analog computers were the dominant controllers in most industrial and military applications. Even today digital processors are still slower and more power consumptive than analog, but offer much more flexibility (programmability) and precision. ...

    STTR Phase I 2016 Department of DefenseDefense Advanced Research Projects Agency
US Flag An Official Website of the United States Government