You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY20 is not expected to be complete until September, 2021.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Additive Manufacturing Sensor Fusion Technologies for Process Monitoring and Control.

    SBC: ARCTOS Technology Solutions, LLC            Topic: DLA18A001

    Universal Technology Corporation (UTC) has teamed with the University of Dayton Research Institute (UDRI), Stratonics, and Macy Consulting to demonstrate not only the transitionability into commercial systems, but also to develop the data analytics and monitoring and control requirements to extract the full value fromseveral sensors, including the Stratonics ThermaViz, acoustic and profilometry se ...

    STTR Phase I 2018 Department of DefenseDefense Logistics Agency
  2. Additive Manufacturing Sensor Fusion Technologies for Process Monitoring and Control.

    SBC: ARCTOS Technology Solutions, LLC            Topic: DLA18A001

    This Phase II project aims to assemble the key set of sensor modalities that are needed to reliably view the key process anomalies and properties of laser powder bed fusion. The research team will down-select from the Phase I sensors investigated and integrate the sensors into a sensor fusion software package that facilitates data collection and synchronization, and eventually feedback control of ...

    STTR Phase II 2019 Department of DefenseDefense Logistics Agency
  3. Advanced Materials for the Design of Lightweight JP5/JP8/DS2 Fueled Engines for Unmanned Aerial Vehicles (UAVs)

    SBC: Northwest Uld, Inc.            Topic: N10AT001

    Northwest UAV Propulsion Systems proposes using our purpose built heavy fuel engine designed and built in the USA for small unmanned aerial systems in the tier 2 & 3 class. We will be adding a lightweight ceramic material set combined with FEA (Finite Element Analysis) and heavy fuel atomizer (IRAD Project) to create a lightweight engine for a SUAS or STUAS class UAVs. The Ceramic material set is ...

    STTR Phase I 2010 Department of DefenseNavy
  4. Advanced Morphing Moulage for Medical Training (AMM-MT)

    SBC: Vcom3D, Inc.            Topic: DHA17A002

    For this Phase I SBIR proposal, Vcom3D proposes to design advanced medical moulage that accurately simulates the progression of an injury or pathology by morphing through a series of clinical states to enable learners to confirm the progression of the wound and to determine whether iatrogenic errors or pathologies occurred duing treatment. The physical morphing moulage may be applied to medical m ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  5. Advanced Outboard Propulsors

    SBC: Cornerstone Research Group, Incorporated            Topic: N17AT019

    CRG, partnered with the University of Cincinnati (UC), proposes to develop, demonstrate, and deliver drop-in replacement, advanced propulsors and lower units for DoD multi-fuel outboard engines. Optimized to eliminate cavitation, minimize vibration, minimize weight, and maximize efficiency, the propulsors will extend DoD small craft range and endurance, increase speed, and enhance mission capabili ...

    STTR Phase I 2017 Department of DefenseNavy
  6. Advanced Ship-handling Simulators

    SBC: D'Angelo Technologies, LLC            Topic: N18AT014

    There is a need to create an automated, adaptive, real time coaching module that can integrate the Conning Officer Virtual Environment (COVE) along with the associated Intelligent Tutor System (COVE-ITS) and the Conning-Officer Ship Handling Assessment (COSA) together. By automating the evaluation process, Surface Warfare Officers (SWOs) will have the opportunity to use the COVE simulations more f ...

    STTR Phase I 2018 Department of DefenseNavy
  7. A Fast-Response, Electronically Controlled Fuel Injection System for Small Heavy Fuel Engines with Multi-Fuel Capabilities

    SBC: MAINSTREAM ENGINEERING CORPORATION            Topic: N10AT033

    Advances in electronically controlled injection technologies for diesel engines have provided a method to improve medium- to heavy-duty engine performance through increased injection pressures, multiple injections, and injection rate shaping. Although these injection systems have been primarily limited to larger engines, the ability to rapidly and precisely meter fuel for smaller engines is partic ...

    STTR Phase I 2010 Department of DefenseNavy
  8. A Hierarchical and Extendable, Component-Based Simulation Tool for Aircraft Thermal Management Systems

    SBC: CFD Research Corporation            Topic: N19BT025

    The requirements for thermal management on tactical aircraft systems have reached a level at which integrated system design must be considered early in the aircraft design process. An integrated propulsion, power and thermal modeling and simulation design approach is necessary for reduced size, weight and power requirements. At the same time, there is an urgent need for capabilities that enable an ...

    STTR Phase I 2019 Department of DefenseNavy
  9. AI-Driven, Secure Navy Mission Planning via Deep Reinforcement Learning and Attribute-Based Multi-Level Security

    SBC: EH GROUP            Topic: N19BT029

    Current mission planning systems allow strike planners and operations centers to perform time-sensitive strike planning, execution monitoring, and validate mission effects using XML-based tools that visualize time critical attack plan and track plan status vs. execution. In this proposed STTR Phase I design for the Next Generation Navy Mission Planning (NGNMPS) system, we will identify expanded op ...

    STTR Phase I 2019 Department of DefenseNavy
  10. Analysis and Modeling of Foreign Object Damage (FOD) in Ceramic Matrix Composites (CMCs)

    SBC: N&R ENGNERING MGT SUPPORT SVCS            Topic: N10AT010

    The Phase I deliverable will be a physic-based model which represents a CMC gas turbine component concomitantly at the material level and the structural level. This model will be probabilistically analyzed to account for the uncertainties in material properties and the uncertainties in the size and impact velocities of possible foreign objects (FOD). A ceramic material must display sufficient capa ...

    STTR Phase I 2010 Department of DefenseNavy
US Flag An Official Website of the United States Government