You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Accelerating Metagenomics Using Graphics Processing Units

    SBC: Multicoreware, Inc.            Topic: 35a

    A key application of the technological breakthrough associated with decreased cost of DNA sequencing is metagenomics. Metagenomics is the process of sequencing DNA from whole ecosystems, rather than individuals or cultures. This approach has the potential to allow the dissection of microbial ecosystems in biofuel producing agricultural land, toxic contaminated sites and hydrocarbon recovery enviro ...

    STTR Phase I 2010 Department of Energy
  2. A Comprehensive Web Infrastructure for Standardizing, Storing, and Launching Density Functional Calculations of Materials and Chemical Compounds

    SBC: Citrine Informatics, Inc.            Topic: 09a

    Density functional theory is used by many researchers funded by the Department of Energy as a method for predicting the behavior of chemicals and materials used in energy applications. However, results of these calculations are often not standardized and, even when they are, expert-level understand of the methods is needed in order to properly perform a simulation. The energy research community a ...

    STTR Phase I 2016 Department of Energy
  3. Advanced Morphing Moulage for Medical Training (AMM-MT)

    SBC: VCOM3D INC            Topic: DHA17A002

    For this Phase I SBIR proposal, Vcom3D proposes to design advanced medical moulage that accurately simulates the progression of an injury or pathology by morphing through a series of clinical states to enable learners to confirm the progression of the wound and to determine whether iatrogenic errors or pathologies occurred duing treatment. The physical morphing moulage may be applied to medical m ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  4. A Mesh Free Framework for Mechanical Simulations of Microstructure Data Files

    SBC: CFD RESEARCH CORPORATION            Topic: 07a

    The Exascale Computing Project is tasked to develop the next generation of high performance computing systems capable of computing at 50 to 100 times faster than current HPC systems. Computing at this extreme-scale will significantly enhance the value of materials modeling and simulation to basic materials research and engineering In particular, computing at the extreme scale will enable a higher ...

    STTR Phase I 2019 Department of Energy
  5. Amplifiers for High Repetition Rate Diode-Pumped Ultra-Intense Femtosecond Lasers

    SBC: XUV LASERS, INC.            Topic: 25c

    The problem being addressed is the development of high intensity ultrashort pulse lasers, in recognition that today’s ultra-high intensity lasers are limited to repetition rates of < 10 Hz. Technical solutions are sought to enable the generation of high energy (joule-level) laser pulses that can be focused to highly relativistic intensity at high repetition rates (100-1000 Hz). The proposed proj ...

    STTR Phase I 2019 Department of Energy
  6. A Multi-physics Analysis Capability for Engine Materials

    SBC: Sunergolab Inc.            Topic: 03b

    Computer-aided Engineering software that apply the Finite Element Method to perform a multi-physics analysis have received widespread acceptance for traditional macro-scale material systems. Challenges persist in the modeling of complex coupled processes in environmental/thermal barrier coatings (E/TBCs) used to protect substrate material against the corrosive environment in the hot section parts ...

    STTR Phase I 2019 Department of Energy
  7. Atomically Precise Membranes for the Separation of Hydrocarbons

    SBC: MAINSTREAM ENGINEERING CORP            Topic: 15a

    Separations often account for a majority of process costs. This is because all traditional separation processes have inherent weaknesses that prevent the system from achieving perfect (or even near perfect in many instances) selectivity. These weaknesses result in large recycle streams and require multiple separation units in concert in order to produce a product clean enough for use or sale. An a ...

    STTR Phase I 2017 Department of Energy
  8. Bio-inspired Macromolecules Containing Atomically Precise Catalytic Active Sites

    SBC: MAINSTREAM ENGINEERING CORP            Topic: 09

    High selectivity in chemical reactions is the key to reducing costs, energy consumption and emissions in chemical processing. More selective and active catalysts will reduce the need for recovering unreacted chemicals for recycle and removing byproducts. Reducing the burden on separation processes will greatly reduce the energy required for chemical production. We propose to design macromolecular ...

    STTR Phase I 2016 Department of Energy
  9. Bio-mathematical Models of Aggregated Tissues &amp; Organ Properties

    SBC: Corvid Innovation LLC            Topic: DHP16A001

    Realistic surgical simulation requires a combination of representative tissue geometry, accurate tissue material properties and lifelike tool-tissue interaction forces. Recent advances in computational power and imaging modalities have provided the capability to represent the anatomical details required for surgical training; however, the mathematical models which govern the underlying tissue pro ...

    STTR Phase I 2016 Department of DefenseDefense Health Agency
  10. Bio-Mathematical Models of Aggregated Tissues &amp; Organ Properties

    SBC: BIOMOJO LLC            Topic: DHP16A001

    BioMojo LLC and the Departments of Mathematics and Biomedical Engineering at the University of North Carolina Chapel Hill, will develop a preliminary bio mathematical model framework to represent how human tissues interact and behave at their boundaries. Tissue interaction properties (e.g. tensile, shear, friction, and so forth) of connective, epithelial, muscular, and nervous tissue including su ...

    STTR Phase I 2016 Department of DefenseDefense Health Agency
US Flag An Official Website of the United States Government