You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. ADA Conformable Wearable Battery-Hybrid Electrical Energy Storage System: A Rechargeable, Safe and High Performance Energy Storage Solution

    SBC: ADA TECHNOLOGIES, INC.            Topic: A15AT010

    ADA Technologies, Inc. proposes to transition our previously developed BB-2590 Hybrid Electrical Energy Storage System (HEESS) architecture into a Conformable Wearable Battery format, or CWB-HEESS (Figure 1). We seek to satisfy a meaningful, Army Program Executive Office (PEO) Soldier need for a rechargeable, safe and high energy CWB. We anticipate the CWB-HEESS will have broad U.S. Dept. of Defen ...

    STTR Phase II 2018 Department of DefenseArmy
  2. Adaptive Integrated Multi-Modal Sensing Array

    SBC: POLARIS SENSOR TECHNOLOGIES INC            Topic: AF08BT02

    Nanoscale infrared detectors are emerging as a potentially powerful alternative to traditional infrared detector technologies. The University of New Mexico has developed dots in a double well (DDWELL) quantum dot infrared photodetectors which have a spectral responsivity that can be tuned by controlling the bias voltage applied. In this Phase II effort, Polaris Sensor and UNM would fabricate a g ...

    STTR Phase II 2010 Department of DefenseAir Force
  3. Additive Manufacturing of Multifunctional Nanocomposites

    SBC: Sciperio, Inc.            Topic: A13AT010

    Sciperio with team members Georgia Institute of Technology and Centecorp have teamed up to develop an Additive Manufacturing Composite using nano and micro fillers. The team will develop multi-scale models that are supported by experimental characterization for advanced 3D Printable materials. Inelastic response of high strength hierarchical structures composed of engineered materials and specif ...

    STTR Phase I 2013 Department of DefenseArmy
  4. Advanced Materials for the Design of Lightweight JP5/JP8/DS2 Fueled Engines for Unmanned Aerial Vehicles (UAVs)

    SBC: Northwest Uld, Inc.            Topic: N10AT001

    Northwest UAV Propulsion Systems proposes using our purpose built heavy fuel engine designed and built in the USA for small unmanned aerial systems in the tier 2 & 3 class. We will be adding a lightweight ceramic material set combined with FEA (Finite Element Analysis) and heavy fuel atomizer (IRAD Project) to create a lightweight engine for a SUAS or STUAS class UAVs. The Ceramic material set is ...

    STTR Phase I 2010 Department of DefenseNavy
  5. Advanced Mediator Architectures for Efficient Electron Transfer in Enzymatic Fuel Cell Electrodes

    SBC: CFD RESEARCH CORPORATION            Topic: AF09BT03

    Our objective is to develop advanced mediator architectures for efficient electron transfer in enzymatic fuel cells (EFCs) for low power systems. The proposed EFC will leverage ongoing research at both CFDRC and Michigan State University to provide a fully-integrated lightweight, low-cost, manufacturable, and renewable power supply, for various military and civilian applications. EFC systems offer ...

    STTR Phase I 2010 Department of DefenseAir Force
  6. A Fast-Response, Electronically Controlled Fuel Injection System for Small Heavy Fuel Engines with Multi-Fuel Capabilities

    SBC: MAINSTREAM ENGINEERING CORP            Topic: N10AT033

    Advances in electronically controlled injection technologies for diesel engines have provided a method to improve medium- to heavy-duty engine performance through increased injection pressures, multiple injections, and injection rate shaping. Although these injection systems have been primarily limited to larger engines, the ability to rapidly and precisely meter fuel for smaller engines is partic ...

    STTR Phase I 2010 Department of DefenseNavy
  7. A Hierarchical and Extendable, Component-Based Simulation Tool for Aircraft Thermal Management Systems

    SBC: CFD RESEARCH CORPORATION            Topic: N19BT025

    The requirements for thermal management on tactical aircraft systems have reached a level at which integrated system design must be considered early in the aircraft design process. An integrated propulsion, power and thermal modeling and simulation design approach is necessary for reduced size, weight and power requirements. At the same time, there is an urgent need for capabilities that enable an ...

    STTR Phase I 2019 Department of DefenseNavy
  8. A High Performance and Cost Effective Ultra High Performance Concrete

    SBC: i2C Solutions, LLC            Topic: AF12BT04

    ABSTRACT: Adversarial installations, such as those housing the means for nuclear weapons production, are increasingly being constructed in heavily fortified locations and often using ultra high performance concrete (UHPC) as the construction material. As such, the U.S. Air Force has considerable interest in further developments of ultra high performance concrete (UHPC) to maintain an advantage o ...

    STTR Phase I 2013 Department of DefenseAir Force
  9. AI-Driven, Secure Navy Mission Planning via Deep Reinforcement Learning and Attribute-Based Multi-Level Security

    SBC: EH GROUP INC            Topic: N19BT029

    Current mission planning systems allow strike planners and operations centers to perform time-sensitive strike planning, execution monitoring, and validate mission effects using XML-based tools that visualize time critical attack plan and track plan status vs. execution. In this proposed STTR Phase I design for the Next Generation Navy Mission Planning (NGNMPS) system, we will identify expanded op ...

    STTR Phase I 2019 Department of DefenseNavy
  10. An Automated, High Throughput, Filter-Free Pathogen Preconcentrator

    SBC: CFD RESEARCH CORPORATION            Topic: A10AT016

    Accurate real-time waterborne pathogen detection is of paramount importance to security of U.S. military forces and installations. Fieldable high-throughput pathogen concentration is a critical analytical need for enhanced detection performance. Existing concentration methods are time-consuming, bulky, labor-intensive, power- and reagent-hungry, and consequently ill-suited for battlefield deployme ...

    STTR Phase I 2010 Department of DefenseArmy
US Flag An Official Website of the United States Government