You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Physics-based Computationally Efficient Spray Combustion Models for LES of Multiphase Reacting Flows

    SBC: CFD RESEARCH CORPORATION            Topic: N17AT002

    One important challenge for the reliable prediction of liquid fuel effects on the combustion in aviation combustors and augmentors is the accurate modeling of underlying physical processes, involving the evaporation of fuels, preferential vaporization, scalar mixing and ignition. LES methodologies are required to accurately capture these transient and inherently unsteady combustion processes. In t ...

    STTR Phase II 2019 Department of DefenseNavy
  2. Fully Encapsulating Dielectrics for Gaseous Helium Cooled Superconducting Power Cables

    SBC: ADVANCED CONDUCTOR TECHNOLOGIES LLC            Topic: N16AT011

    The proposed program will develop dielectrics for dc superconducting power transmission cables that are cooled with cryogenic helium gas. The Dielectrics will be sealed again helium gas penetration and allow for an operating voltage of 12 kV in a pressure of 2 MPa at 50 K. The dielectrics will be designed for use with all helium facing components of power transmission systems based on CORC cables. ...

    STTR Phase II 2018 Department of DefenseNavy
  3. Epitaxial Technologies for Gallium Oxide Ultra High Voltage Power Electronics

    SBC: AGNITRON TECHNOLOGY, INC.            Topic: N16AT023

    xß-Ga2O3 has emerged as a potentially disruptive semiconductor with a predicted breakdown field of ~8 MV/cm which is more than twice the breakdown field for the incumbent wide bandgap semiconductors GaN and SiC. The availability of ß-Ga2O3 bulk substrates sets this material apart from other wide bandgap materials for power electronic applications. However, the challenge is to find suitable epita ...

    STTR Phase II 2018 Department of DefenseNavy
  4. Information-based Norms on Flow, Operations and Traffic Over Networks (INFOTON)

    SBC: ISEA TEK, LLC            Topic: N18AT027

    The Internet of Things (IoT) connects people, data, and "things" (e.g., software, sensors, platforms), facilitating the translation of information into actions. Although naval platforms’ networks and communication suites have evolved significantly in the past few years to support such required connectivity, one of the greatest technical challenges still facing the military community is the proce ...

    STTR Phase II 2019 Department of DefenseNavy
  5. Low Cost Magnetic Sensor for Mine Neutralizer Identification and Charge Placement

    SBC: QUSPIN INC.            Topic: N17AT013

    Optically pumped magnetometers provide very high performance but they cost tens of thousands of dollars, and they are large and power hungry. Recently we successfully developed and commercialized laser pumped magnetometers with size, weight and power consumption that is an order of magnitude below current state-of-the-art without sacrificing performance. In this project, the focus will be on produ ...

    STTR Phase II 2019 Department of DefenseNavy
  6. Prediction of Rotor Loads from Fuselage Sensors for Improved Structural Modeling and Fatigue Life Calculation

    SBC: TECHNICAL DATA ANALYSIS, INC.            Topic: N17AT009

    Phase I addressed the technological gap in the predictive capabilities of CFD/FSI in the context of hybrid loads/sensor models used in an aircraft’s fatigue life tracking program for critical fuselage and dynamic components across the full flight regime. It demonstrated these technology advancements: (1) a combined rotor, fuselage aeroelastic model; (2) empirical rotor hub loads prediction from ...

    STTR Phase II 2019 Department of DefenseNavy
  7. Risk-Based Unmanned Air System (UAS) Mission Path Planning Capability

    SBC: BARRON ASSOCIATES, INC.            Topic: N17BT034

    Current aircraft operations within the National Airspace System (NAS) rely heavily on the presence of an on-board pilot to safely manage the flight. Integration of Unmanned Aircraft Systems (UAS) into the NAS requires a high confidence that these operations can meet or exceed the safety afforded through manned operations. Specifically, these UAS operations must not pose an undue risk to persons, s ...

    STTR Phase II 2019 Department of DefenseNavy
  8. Optimized High Performance Stainless Steel Powder for Selective Laser Melting Additive Manufacturing (AM)

    SBC: SHEPRA, INC.            Topic: N16AT007

    Stainless steel is a vital component of many air, land and sea systems that support the Navy warfighter. In particular, 17-4 precipitation hardened stainless steel, (17-4 PH SS) with its extrodinary combination of strength, ductility, high temperature performance and corrosion resistance plays an important role in supporting the warfighter. When processed conventionally, 17-4 PH SS typical exhibit ...

    STTR Phase II 2018 Department of DefenseNavy
  9. Situational Awareness for Mission Critical Ship Systems

    SBC: IERUS TECHNOLOGIES INC            Topic: N18AT009

    With the advent of the Navy’s newest classes of all-electric vessels, the interdependence and functional correlation of the power plant with other mission-critical ship systems such as integrated cooling, weapons, navigation, air surveillance, and IT control network systems, maintaining optimal oversight and control of power distribution aboard ship becomes increasingly challenging. As the opera ...

    STTR Phase II 2019 Department of DefenseNavy
  10. Quantifying Uncertainty in the Mechanical Performance of Additively Manufactured Parts Due to Material and Process Variation

    SBC: TECHNICAL DATA ANALYSIS, INC.            Topic: N16AT004

    Additive manufacturing (AM) technology offers rapid prototyping and large design freedom. It can potentially reduce costs and improve quality by providing precise control on microstructure and density for the production of complex components. However, the part quality and mechanical performance of components fabricated by current AM technology are not comparable to that produced by traditional met ...

    STTR Phase II 2018 Department of DefenseNavy
US Flag An Official Website of the United States Government