You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. 1200 V/50 A AlGaN-GaN-Si MOS-HFETs and Schottky Rectifiers

    SBC: GENESIC SEMICONDUCTOR INC.            Topic: 11c

    DoEs recent emphasis on increasing fuel economy requires electrification of the vehicle powertrain, thus leading to extended range electric vehicles (EREVs), hybrid electric vehicles (HEVs), battery electric vehicles (BEV) and fuel cell electric vehicles (FCEV). All electric propulsion systems require high current, high-voltage (600 V-1200 V), low-loss power semiconductor switches. Present electri ...

    STTR Phase I 2013 Department of Energy
  2. Ultra Low-Power and Embeddable Blade-Condition Monitor

    SBC: Extreme Diagnostics, Inc.            Topic: 07c

    This SBIR/STTR project delivers an ultra-low power structural health monitoring (SHM) system that uses autonomous, wirelessly embedded sensors to monitor and assess structural integrity in wind turbine blades. EASE features impedance-based active SHM, which is highly sensitive to damage like cracks, delimitations, mass variations, fastener failures and stiffness changes. Blades are the only wind t ...

    STTR Phase I 2010 Department of Energy
  3. Thermoelectric Systems for High-Efficiency, Low-Cost Vehicle Waste Heat Recovery

    SBC: CREARE LLC            Topic: 06f

    An enormous amount of energy from burning hydrocarbon fuels is wasted as heat in vehicle exhaust gas. The goal of this project is to improve vehicle efficiency and reduce fuel consumption by converting some of this heat into electric power. We will develop a solid state thermoelectric generator (TEG) that can efficiently produce electric power from high-temperature exhaust heat. The approach is to ...

    STTR Phase I 2013 Department of Energy
  4. Segmented and Blocky Proton Conducting Membranes for Solar Fuels Generator Applications

    SBC: NANOSONIC INC.            Topic: 19b

    The Department of Energy’s Office of Basic Energy Sciences has identified a need for new proton conducting membranes for solar fuel generator applications. Specifically, development of block copolymers with good proton conductivity at ambient temperatures and low gas diffusion and ionic transports are needed. There are currently no commercially available proton conducting membranes which possess ...

    STTR Phase I 2019 Department of Energy
  5. Segmented and Blocky Hydrocarbon Ion Pair Membranes for Fuel Cells

    SBC: NANOSONIC INC.            Topic: 10a

    The DOE has identified a need for thin and durable proton conducting membranes that offer enhanced energy efficiency to power zero emission vehicles. Specifically, a cost effective hydrocarbon-based alternative to expensive commercial perfluorosulfonic acid ionomers are sought. Current hydrocarbon membranes do not meet the performance or durability needed in the conditions for transportation fuel ...

    STTR Phase I 2019 Department of Energy
  6. Scalable Framework for Integrating Multi-Omics Data for Biosystem Analysis

    SBC: Omics Data Automation, Inc.            Topic: 01a

    Understanding the genomic basis of economically important plants for growth time, crop yield, responses to drought and disease resistance is of critical importance to sustaining and improving food supplies for humans and livestock, as well as insuring sufficient raw material availability for industries that depend on plant materials, such as biofuel manufacture. Current computational methods for a ...

    STTR Phase I 2019 Department of Energy
  7. Recovery Act- Scale-up of the Nanomanufacturing of Coated Powders for Superior Battery Electrode Materials

    SBC: ALD NANOSOLUTIONS, INC            Topic: 09b

    There is significant opportunity for energy efficiency improvements in the industrial and manufacturing sectors in the U.S., both from the production and consumption perspective. Higher energy density battery materials will play a role in both, through improved storage of electricity from renewable sources, the enabling of electric vehicles, and through the development of longer lasting, higher po ...

    STTR Phase I 2010 Department of Energy
  8. Real-Time Distributed Quench Detection in High Temperature Superconductor Magnets

    SBC: LUNA INNOVATIONS INCORPORATED            Topic: 20a

    Nuclear fusion has great potential for supplying global energy needs with a clean, abundant energy source. Advanced superconducting magnets will be used to contain the plasma at the center of the reactor. To operate these magnets, new sensors are needed to monitor the superconductors in real-time to detect the signs that the superconductor may quench (lose superconducting properties), so that corr ...

    STTR Phase I 2018 Department of Energy
  9. Probabilistic Pharmacokinetic Models for Diagnosis, Prognosis, and Personalized Treatment

    SBC: BARRON ASSOCIATES, INC.            Topic: DHA17B003

    Clinicians have recognized that the nature of diseases can be highly individual resulting in different patterns of onset and progression. In turn, the response of an individual to drugs is also unique and governed by a variety of factors. Pharmacokinetic models represent the movement of a drug through the body, and personalized pharmacokinetic models aim to capture the unique responses of specific ...

    STTR Phase I 2018 Department of DefenseDefense Health Agency
  10. Practical Fiber Delivered Laser Ignition Systems for Vehicles

    SBC: Seaforth LLC            Topic: 08b

    Improved ignition methods are needed for advanced vehicle combustion systems, in particular those that allow reliable ignition of lean mixtures in gasoline engines at elevated pressures. Laser ignition is a candidate technology having the potential to address these needs. However, despite more than 40 years of laser ignition research, the technology is not yet in commercial use. A critical proble ...

    STTR Phase I 2013 Department of Energy
US Flag An Official Website of the United States Government