You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Windable Lithium-ion Conducting Ceramic Electrolytes

    SBC: Chemat Technology, Inc.            Topic: A09AT011

    Lithium-air battery consists of a lithium anode electrochemically coupled to atmospheric oxygen through an air cathode. The major advantages of lithium air batteries are that air cathode active material, oxygen, is not stored internal to cell system and lithium anode being extremely lightweight metal with a highest theoretical specific energy density. This energy density is well comparable with t ...

    STTR Phase I 2010 Department of DefenseArmy
  2. VANESSA: Virtual Analysis Networks and Explanations for Social Sensing Analysis

    SBC: SMART INFORMATION FLOW TECHNOLOGIES LLC            Topic: A18BT008

    SIFT, JHU medicine and University of Central Florida are proposing to develop VANESSA (Virtual Analysis Networks and Explanations for Social Sensing Analysis) - a social sensing platform providing team diagnostics of interacting teams and recommendations for enhanced team functioning of human and human-cyber teams. The overall goal of VANESSA is to develop an adaptive technology platform with a fo ...

    STTR Phase I 2019 Department of DefenseArmy
  3. Ultra Fine Grain Steel Alloys by Severe Plastic Deformation

    SBC: TRANSITION45 TECHNOLOGIES INC            Topic: A10AT001

    This STTR program proposes to exploit the tremendous benefits that could be offered by the development of ultra fine grain steel alloys for application to the production of high performance components for military rotorcraft applications. A severe plastic deformation technology based on isothermal forging technologies will be explored here. The goal is to demonstrate a practical, production leve ...

    STTR Phase I 2010 Department of DefenseArmy
  4. THz and Sub-THz MEMS-Fabricated Klystron Amplifier

    SBC: INNOSYS, INC.            Topic: A09AT016

    InnoSys and Purdue University will continue to research and develop robust Phase I approaches for building, implementing and demonstrating a new class of terahertz (THz) vacuum electronic device (VED) power amplifiers and power sources at frequencies in the range of 0.3-3.0 THz (the THz regime) employing advanced micro electro mechanical system (MEMS) and vacuum technology and processes. There is ...

    STTR Phase II 2010 Department of DefenseArmy
  5. Technologies to Target Circadian Rhythm Disruption in PTSD

    SBC: Cognionics, Inc.            Topic: A16AT014

    This STTR project will develop a wearable sensor suite for accurate assessment of circadian and sleep rhythms with the goal to identify abnormalities in PTSD patients and enable personalized therapy to help restore their normal functional and quality of life. Phase I has already demonstrated proof-of-principle hardware. The primary Phase II objective is to successfully carry out a human subjects s ...

    STTR Phase II 2018 Department of DefenseArmy
  6. System for Nighttime and Low-Light Face Recognition

    SBC: POLARIS SENSOR TECHNOLOGIES INC            Topic: SOCOM18A001

    The objective of this proposal is to develop instrumentation and algorithms for acquiring facial features for facial recognition in low- and no-light conditions.We will use cross-spectrum matching by exploiting infrared polarimetric imagery which tends to show features that match more closely visible imagery than conventional infrared.In addition to thermal infrared, we will also test subjects in ...

    STTR Phase I 2018 Department of DefenseSpecial Operations Command
  7. Sustainable Materials for Thermal Management of Base Camps

    SBC: HI-Z TECHNOLOGY, INC.            Topic: A10AT024

    Hi-Z Technology, Inc. (Hi-Z) and the University of California San Diego propose to adapt Hi-Z’s innovative Quantum Well (QW) thermoelectric (TE) technology to develop a TE cooler for the Army’s base camp tents. The cooler is to be embedded in the flexible tent materials and powered by electricity generated by photovoltaics. Hi-Z has developed nanocomposite QW TE materials that have high Figur ...

    STTR Phase I 2010 Department of DefenseArmy
  8. Solar Blind MgZnO Photodetectors

    SBC: AGNITRON TECHNOLOGY, INC.            Topic: A13AT006

    This Phase I program is focused on enhancement of the performance of MgZnO based solar blind detectors. MgZnO alloys have superior optoelectronic properties with bandgaps suitable for solar blind detection. Issues related to doping and miscibility will be addressed. This will involve the use of advanced MOCVD and MBE growth techniques and consideration of both Schottky and p-n junction devices. No ...

    STTR Phase I 2013 Department of DefenseArmy
  9. Software Tools for Scalable Quantum Validation and Verification

    SBC: SC SOLUTIONS, INC.            Topic: A18BT011

    In this Small Business Technology Transfer (STTR) Phase I project, SC Solutions, teaming with Sandia National Laboratories (SNL), will demonstrate the feasibility of a scalable Quantum Computing Validation & Verification (QCVV) tool that will allow quantum computing researchers to rapidly and conveniently test and benchmark their quantum computing systems. While several QCVV techniques have been d ...

    STTR Phase I 2019 Department of DefenseArmy
  10. Simultaneous Imaging of Velocity and Temperature Fields in Reacting Flows using Thermographic Phosphors

    SBC: METROLASER, INCORPORATED            Topic: A09AT003

    A method is proposed for the simultaneous imaging of temperature and velocity fields inside combustion chambers to enable experimental data on turbulent heat fluxes needed for model validation and development. Applications include turbine engines, afterburners, internal combustion engines, and boilers. Temperature imaging is proposed with laser-induced luminescence imaging of phosphor particles su ...

    STTR Phase I 2010 Department of DefenseArmy
US Flag An Official Website of the United States Government