You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY20 is not expected to be complete until September, 2021.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Situational Awareness for Mission Critical Ship Systems

    SBC: IERUS TECHNOLOGIES, INC            Topic: N18AT009

    The US Navy operates a vast fleet of combat and support vessels with complex power control systems under the control and decision authority of human operators. Several current resources such as SPY-1D radar and Vertical Launch System (VLS) and future resources such as railgun, AMDR, and high energy laser (HEL) are energy hungry, exceeding current and planned power generation capability when deploy ...

    STTR Phase I 2018 Department of DefenseNavy
  2. Seamless Wireless Charging of Micro and Small Unmanned Aerial System Through Local Power Transmission Infrastructure

    SBC: EH GROUP            Topic: N19AT019

    Wireless charging of unmanned aerial system (UAS) platforms from the environment has the potential to greatly increase flight and mission times. A promising option is to use electromagnetic fields from the power transmission infrastructure as an energy source. EH Group and the University of Alabama propose a design for UAS wireless charging in the near-field environment of the commercial power tra ...

    STTR Phase I 2019 Department of DefenseNavy
  3. Refractory Metal Coating for Electromagnetic Launcher Rails

    SBC: TDA Research, Inc.            Topic: N10AT025

    Electromagnetic launchers or rail guns are a key component of the Navy’s all-electric ship of the future, but they lack the durability required for repeated firings. TDA Research and the University of Nevada, Reno (UNR) are developing a tough, durable and conductive refractory metal coating that will protect the copper alloy conductors (rails) from the extreme heat and wear conditions inside the ...

    STTR Phase I 2010 Department of DefenseNavy
  4. Quench Monitoring and Control System for High-Temperature Superconducting Coils

    SBC: Advanced Conductor Technologies LLC            Topic: N19AT016

    The Navy has been developing superconducting systems, based on high-temperature superconductors (HTS), for future use on Navy ships. One of the challenges associated with superconducting magnets is the possibility of a quench, which is an event where a local hot spot develops within the superconductor that quickly spreads throughout the device, driving it into its normal and dissipative state. Sen ...

    STTR Phase I 2019 Department of DefenseNavy
  5. Power Dense Turbo-Compression Cooling Driven by Waste Heat

    SBC: Mantel Technologies, Inc.            Topic: N19AT013

    The U.S. Navy seeks methods to improve the fuel economy of marine diesel engines through utilization of waste heat. Low temperature engine jacket water, lubrication oil, and aftercooler air are largely untapped streams of thermal energy on these ships, but their utilization circumvents many operation challenges associated with exhaust gases. For example, variable and high exhaust gas temperatures ...

    STTR Phase I 2019 Department of DefenseNavy
  6. Power-Dense Electrical Rotating Machines for Propulsion and Power Generation

    SBC: Continuous Solutions LLC            Topic: N19AT007

    The primary objective is to develop electric machine/drive topologies and power architectures that achieve the power densities required for 50% more power without the increase in weight or space requirements. In addition to PMSM-based designs, two new machine topologies will be considered. The first is a trapped flux coreless (TFC) machine that utilizes superconducting pucks made of YBCO to produc ...

    STTR Phase I 2019 Department of DefenseNavy
  7. POC Blood Coagulopathy Monitor

    SBC: CFD Research Corporation            Topic: DHA19A001

    Traumatic injuries account for 30% of all life years lost in the US and is the leading cause of death for people under 46 years of age. Uncontrolled bleeding or hemorrhage constitute 30-40% of trauma related deaths and are considered to be a major cause o

    STTR Phase I 2019 Department of DefenseDefense Health Program
  8. New Integrated Total Design of Unmanned Underwater Vehicles (UUVs) Propulsion System Architecture for Higher Efficiency and Low Noise

    SBC: Continuous Solutions LLC            Topic: N18AT012

    In this proposal, a meta model-based scaling law will be used to represent each system component. A components meta model-based scaling law describes the tradeoffs between performance metrics for that component or subsystem as a function of its ratings in relation to the system. This greatly reduces the number of degrees of freedom for each component, and at the same time, retains the information ...

    STTR Phase I 2018 Department of DefenseNavy
  9. Multi-scale modeling of corrosion fatigue damage using peridynamics theory

    SBC: CFD Research Corporation            Topic: N13AT007

    The overall objective of this effort is to identify, and validate a suitable methodology and the associated multi-scale computational technique for predictive assessment of corrosion fatigue damage in Naval aircraft. Annual costs for corrosion inspection and repair of military aircraft are estimated to exceed $1B. Predictive modeling of corrosion fatigue damage is challenging since it has to captu ...

    STTR Phase I 2013 Department of DefenseNavy
  10. Miniature Electronic DFI for 5-20 Hp HFE

    SBC: JM HARWOOD, LLC            Topic: N10AT033

    JM Harwood, LLC, and UAH Propulsion Research Center propose the development of an electronic miniature Direct Fuel Injection (DFI) system for 5-20 hp heavy fuel engines. This highly integrated Very Small Injection Technology (V-SInTech) DFI system will be capable of (a) multiple injections per cycle, (b) variable injection timing, (c) variable spray penetration depth, (d) real-time closed loop mod ...

    STTR Phase I 2010 Department of DefenseNavy
US Flag An Official Website of the United States Government