You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY20 is not expected to be complete until September, 2021.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Distributed Fiber Optic Twist Measurement in Shape Sensing Tethers

    SBC: Luna Innovations Incorporated            Topic: N08T029

    Existing methods to provide cable orientation and array element localization in the Navy’s fixed and towed array systems and tethered unmanned vehicles rely on devices embedded in the cable itself, such as hydrophones, magnetic heading and orientation sensors, and accelerometers. These traditional sensors have power, weight, space, and EMI budgets within the cable that require design compromises ...

    STTR Phase II 2010 Department of DefenseNavy
  2. Novel Fiber Optic Methods for Sensing Shape, Orientation and/or Heading of Undersea Arrays and Tethers

    SBC: 3 Phoenix, Inc.            Topic: N08T029

    In the Phase I STTR, N08-T029 “Novel Fiber Optic Methods for Sensing Shape, Orientation and/or Heading of Undersea Arrays and Tethers” a concept was developed for a fiber optic sensing array and shape reconstruction algorithm to be used for situation awareness of flexible undersea cable structures. Undersea cable structures are deployed in environments unsuitable for direct in-situ observation ...

    STTR Phase II 2010 Department of DefenseNavy
  3. Compressive Sensing in the Tactical Underwater Environment- MP 45-09- (MP 34-10)

    SBC: Metron, Incorporated            Topic: N09T019

    The theory of compressive sensing (CS) will be extended to the design of arrays for underwater systems. The underlying theory is applicable to arbitrary sensor arrays, but the focus will be placed on synthetic aperture sonar (SAS). The proposed research will integrate CS with the closely related and evolving field of matrix completion. Concerning the latter, it is assumed that a matrix of noisy da ...

    STTR Phase II 2010 Department of DefenseNavy
  4. Energy management system for unmanned, untethered sensors

    SBC: INSCOPE SOLUTIONS            Topic: N08T033

    Research Proposed: The continued development of an innovative and comprehensive energy management technology that could lead to revolutionary improvements in Combat Reach Capabilities (CRC)and significant increases in a force multiplier.The goal is to optimize energy sources of untethered unmanned vehicles and unattended sensors in order to significantly improve the overall mission capabilities of ...

    STTR Phase II 2010 Department of DefenseNavy
  5. Ambient Noise Interferometry for Passive Characterization of Dynamic Environments

    SBC: ZEL TECHNOLOGIES, L.L.C.            Topic: N10AT004

    Non-invasive, stealthy nature of passive remote sensing combined with its low cost make passive techniques a promising supplement or replacement of traditional active remote sensing techniques. Coherent processing of diffuse wave fields has a proven potential for remote sensing of stationary environments. The proposed research extends noise interferometry to characterization of dynamic environment ...

    STTR Phase I 2010 Department of DefenseNavy
  6. Miniature, Portable, Device to Detect and Monitor Coagulopathy

    SBC: Enterprise Sciences, Inc.            Topic: N10AT043

    The objective of this proposal is to demonstrate the feasibility of a new thromboelastograph (TEG)-like instrument that has the same basic capabilities as the TEG – that is to say, capabilities of monitoring in vitro the kinetics, strength, and stability of clot formation in blood samples that are clot induced – but which is miniaturized, highly portable, rugged, and insensitive to adverse env ...

    STTR Phase I 2010 Department of DefenseNavy
  7. Lightweight Layered Protection Systems for Missile Launchers and Canisters

    SBC: Strategic Insight, Ltd.            Topic: N10AT018

    The research objective is to develop Modeling and Simulation (M&S) tools to accurately predict the performance of new state-of-the-art material systems as protection for high value missiles deployed in their launchers or canisters. The focus is on adapting multi-layered novel and non-traditional material technologies to improve protection against penetration and fragment impacts, focused detonatio ...

    STTR Phase I 2010 Department of DefenseNavy
  8. Integration of PALACE and Touchdown Planning Methods for Landing CUAS at Unprepared Sites

    SBC: AURORA FLIGHT SCIENCES CORPORATION            Topic: N10AT039

    Aurora Flight Sciences and MIT have been developing tools and techniques that, together with existing 3D environment decision-making and navigation tools developed by AMRDEC in the PALACE program, are well-suited to the problem of autonomous vertical landing on unprepared landing sites. In this program, Aurora will team with MIT researchers and UC Santa Cruz (UCSC licenses PALACE technologies for ...

    STTR Phase I 2010 Department of DefenseNavy
  9. PVDF Wire Sensor for External Monitoring of Piping Sound Pressure Level

    SBC: SMD Corporation            Topic: N10AT016

    In this project we propose to demonstrate the feasibility of an external pipe sensor for measuring sound pressure levels in submarine piping systems. The sensor consists of flexible PVDF wire wrapped a number of integral turns around the pipe exterior. The charge/voltage output of the sensor can be shown to be directly proportional and highly sensitive to the amplitude of the contained fluid pulsa ...

    STTR Phase I 2010 Department of DefenseNavy
  10. Real-time In-situ Adaptation of Decision Parameters for Undersea Target Tracking in a Sensor Field

    SBC: INTELLIGENT AUTOMATION, INC.            Topic: N10AT038

    Network-centric command and control of complex military missions (e.g., anti-submarine warfare, collaborative mine hunting, etc.) calls for cost-effective designs that can dynamically tradeoff multiple conflicting objectives. Often these optimizations have to be carried out at a higher level, and the associated control directives have to be disseminated down to a distributed system, thereby, influ ...

    STTR Phase I 2010 Department of DefenseNavy
US Flag An Official Website of the United States Government