You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY22 is not expected to be complete until September, 2023.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. High Performance Simulation Tool for Multiphysics Propulsion Using Fidelity-Adaptive Combustion Modeling

    SBC: STREAMLINE NUMERICS, INC.            Topic: T1

    The innovation proposed here is a Pareto-Efficient Combustion (PEC) model for fidelity-adaptive combustion modeling capability implemented into the Loci-STREAM CFD code for use at NASA for simulation of rocket combustion. This work will result in a high-fidelity, high-performance multiphysics simulation capability to enhance NASA’s current simulation capability of unsteady turbulent reacting flo ...

    STTR Phase II 2018 National Aeronautics and Space Administration
  2. Multiphase Modeling of Solid Rocket Motor Internal Environment

    SBC: CFD RESEARCH CORP            Topic: T1

    Solid rocket motor (SRM) design requires detailed understanding of the slag accumulation process in order to: predict thrust continuity, optimize propellant conversion efficiency, predict coning effects from sloshing, and to assess potential orbital debris (slag) hazard. Current state-of-the-art models for SRM environment do not have the capability to simulate the accumulation and dynamics of slag ...

    STTR Phase II 2018 National Aeronautics and Space Administration
  3. Transient Acoustic Environment Prediction Tool for Launch Vehicles in Motion During Early Lift-Off

    SBC: CFD RESEARCH CORP            Topic: T1

    Launch vehicles experience extreme acoustic loads dominated by rocket plume interactions with ground structures during liftoff, which can produce damaging vibro-acoustic loads on the vehicle and payloads if not properly understood and mitigated against. Existing capabilities for modeling turbulent plume physics are too dissipative to accurately resolve the acoustic propagation and detailed vehicle ...

    STTR Phase II 2018 National Aeronautics and Space Administration
  4. Multiscale Eulerian-Lagrangian Spray Methodology Coupled with Flamelet Models for Liquid Rocket Engine Combustion

    SBC: STREAMLINE NUMERICS, INC.            Topic: T9

    The innovation proposed here is a novel multi-scale coupling methodology implemented in the Loci-STREAM CFD code, for developing a high-fidelity, high-performance multiphase combustion modeling capability to enable accurate, fast and robust simulation of unsteady turbulent, reacting flows involving cryogenic propellants (such as LOX/Methane) in liquid rocket engines (LREs). During Phase 1 work, a ...

    STTR Phase I 2018 National Aeronautics and Space Administration
  5. Multi-Band Software Defined Radio Sensor System

    SBC: Pegasense, LLC            Topic: T13

    This Multiband Software Defined Radio (SDR) sensor system proposal will demonstrate the ability to operate within multiple frequency bands and across multiple technology platforms in a single transceiver. The center frequencies and bandwidths chosen are representative of current demonstrated commercial or research devices and bands used: 400 MHz, 900 MHz, and 2.4 GHz ISM bands, with bandwidths of ...

    STTR Phase I 2018 National Aeronautics and Space Administration
  6. Wireless Passive Nanoparticle based Intelligent Sensor System for Extreme Environments

    SBC: Sensatek Propulsion Technology, Inc.            Topic: T13

    Sensatek Propulsion Technology, Inc. proposes to demonstrate the feasibility of a wireless, passive, nanoparticle-based sensor system. The sensor in its current form can be used to measure real time temperatures and pressures wirelessly without the need of an external energy source. It should be noted that the same sensing principle can be used for strain monitoring as well. It comprises of a micr ...

    STTR Phase I 2018 National Aeronautics and Space Administration
  7. Additive Manufacture of Refractory Metal Propulsion Components

    SBC: Geoplasma, LLC            Topic: T9

    Niobium alloy (C-103) reaction control system (RCS) chambers have been used on numerous NASA programs. However at elevated temperatures, the strength of C-103 decreases significantly. Higher strength niobium alloys have been developed, but these alloys lack the formability of C-103. Recently, Additive Manufacture (AM) of niobium and C-103 has been demonstrated using powder bed electron beam me ...

    STTR Phase I 2018 National Aeronautics and Space Administration
  8. Smallsat Swarm Sparse Aperture SAR for Recon and Surveillance (SSSASAfRaS)

    SBC: VisSidus Technologies, Inc.            Topic: T4

    The goal of the proposed Phase I work is to demonstrate the feasibility of the coordination and control of a low cardinality (n=12) swarm of smallsats that realizes a distributed Synthetic Aperture Radar (SAR) in low Earth orbit. Preliminary mission and spacecraft design work has shown that the swarm can support SAR imaging in the L-band (1.35 GHz) with a ground range resolution finer than 10 m wi ...

    STTR Phase I 2018 National Aeronautics and Space Administration
  9. Prediction of Plume Induced Rock Fracture for Landers

    SBC: CFD RESEARCH CORP            Topic: T9

    The landing surface damage and liberation of debris particles caused by rocket plume impingement flow during spacecraft propulsive landing on unprepared surfaces of Moon, Mars, and other celestial bodies poses a high risk for robotic and human exploration activities. Simply determining whether the plume induced loads exceed the bedrock bearing capacity threshold is not sufficient. An integrated m ...

    STTR Phase I 2018 National Aeronautics and Space Administration
  10. A Scalable Gas-Particle Flow Simulation Tool for Lander Plume-Surface Interaction and Debris Prediction

    SBC: CFD RESEARCH CORP            Topic: T9

    Spacecraft propulsive landings on unprepared regolith present in extra-terrestrial environments pose a high risk for space exploration missions. Plume/regolith interaction results in (1) the liberation of dust and debris particles that may collide with the landing vehicle and (2) craters whose shape itself can influence vehicle dynamics. To investigate such gas-granular interactions for large-scal ...

    STTR Phase I 2018 National Aeronautics and Space Administration
US Flag An Official Website of the United States Government