You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Additive Manufacture of Inorganic Freeform Gradient-Index Optics

    SBC: VOXTEL, INC.            Topic: N19BT028

    An additive-manufacturing process will be developed for printing high-quality freeform inorganic gradient-index (GRIN) optical elements. Candidate nanocrystal materials including ZnS, ZrO, TiO2, PbSe, and rare-earth-doped metal oxides, will be synthesized and characterized. A process for inkjet-print depositing high-volume-percent loading density of binary, ternary, quaternary, etc., nanoparticle ...

    STTR Phase I 2020 Department of DefenseNavy
  2. Non-destructive Webbing Strength Indicator

    SBC: TDA RESEARCH, INC.            Topic: N19BT032

    Webbing is strong, woven material that is used to secure cargo as well as for safety equipment such as seat belts, harnesses, and parachute rigging. Due to its extensive use in Military applications, the strength of the webbing is a key component of equipment design, especially in the case of safety gear that protects soldiers, as lives may be dependent on the strength and proper performance of th ...

    STTR Phase I 2020 Department of DefenseNavy
  3. Multi-scale Physics-based Modeling of Particle-Impact Erosion of CMCs

    SBC: CFD RESEARCH CORPORATION            Topic: N19BT033

    Sand particles ingested into aeroengines can impinge on components made of ceramic-matrix composites (CMCs) and cause structural damage including long-term erosion. Experimental analysis of erosion typically focuses on the damage footprint and mass loss and is limited in the range of operating parameters that can be examined. Hence, high-fidelity modeling of the erosion process is essential to der ...

    STTR Phase I 2020 Department of DefenseNavy
  4. Three Dimensional Field of Light Display

    SBC: TRITON SYSTEMS, INC.            Topic: N19BT036

    As the Navy continues to reduce manpower requirements associated with operating ever-increasing technologically complex systems, new methods that enable natural and intuitive interaction with 3D data are required to reduce overall operator workload and to enhance situational awareness. Operators who cannot quickly access and interpret data are prone to errors ranging from missing critical data dur ...

    STTR Phase I 2020 Department of DefenseNavy
  5. Fully Automated Quantum Cascade Laser Design Aided by Machine Learning

    SBC: PENDAR TECHNOLOGIES LLC            Topic: N20AT003

    Pendar Technologies proposes to develop a QCL simulation tools that leverage machine learning to dramatically improve the speed of QCL device design. The innovative QCL design suite proposed will benefit from recent advances made by Pendar in bandstructure engineering, laser cavity design and thermal management at the chip and the package level.

    STTR Phase I 2020 Department of DefenseNavy
  6. Fully Automated Quantum Cascade Laser Design Aided by Machine Learning with up to 100X Design Cycle Time Reduction

    SBC: IRGLARE LLC            Topic: N20AT003

    A Quantum Cascade Laser's (QCL) core material is a series of nanometer scale layers of conduction band barrier and well materials designed to induce lasing electron energy levels. The key design feature of a QCL is the ability to repeat the laser core superlattice design to cascade electrons through the superlattice repetitions by repeated stimulated emission. Such designs are generally carefully ...

    STTR Phase I 2020 Department of DefenseNavy
  7. Ambient Quantum Processor compatible with an All-photonic Repeater Architecture

    SBC: CATALYTE, LLC            Topic: N20AT005

    The significance of the problem is to deploy combined quantum communication-and-processing near to Navy applications.   Our approach, when successful, would enable small, ambient operating QPUs to be connected at a distance by quantum-secure communication.  Unlike bulky optical components and in-contrast to cryogenic qubits, our system, using in situ generated photons, offers a practical s ...

    STTR Phase I 2020 Department of DefenseNavy
  8. Advanced, High-Performance, Low-Noise Propeller Designs for Small UxS

    SBC: CFD RESEARCH CORPORATION            Topic: N20AT006

    Improved propeller designs for Small Unmanned Aerial Systems are needed to improve performance and reduce acoustic emissions. Traditional propeller design methods don’t take advantage of advances in coupled fluid, structure and acoustics computational design methods nor advances in high strength, high modulus materials to extend performance of propellers and reduce noise emissions. In the propos ...

    STTR Phase I 2020 Department of DefenseNavy
  9. Dual Stage Integrated Cyclone (DSIC) Geometry for Sea Chest Water Management System

    SBC: MAINSTREAM ENGINEERING CORP            Topic: N20AT008

    Current Zumwalt Class destroyers (DDG 1000) sea chest openings are unique because they must be flush to the hull, limiting implementation of common sea chest designs (e.g., bubble shields or raised inlets). This design results in the ingestion of higher amounts of ice, debris, and air, resulting in increased maintenance costs, potential pump failure, and degraded overall cooling performance. The N ...

    STTR Phase I 2020 Department of DefenseNavy
  10. Electromagnetic Interference Resilient, Low Noise Figure, Wide Dynamic Range RF Photonic Link

    SBC: Photonic Systems, Inc.            Topic: N20AT012

    Photonic Systems, Inc. (PSI) and Harvard University propose to collaborate in Phases I and II of this STTR program towards the goal of demonstrating a broadband RF/photonic signal link with a specific combination of performance parameters and other features not available from present state-of-the-art links. The solicitation’s goal – specifically, an electromagnetic attack-resilient electro-op ...

    STTR Phase I 2020 Department of DefenseNavy
US Flag An Official Website of the United States Government