You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY20 is not expected to be complete until September, 2021.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Adaptive Turbine Engine Control for Stall Threat Identification and Avoidance

    SBC: AURORA FLIGHT SCIENCES CORPORATION            Topic: N10AT008

    Aurora Flight Sciences and MIT propose to develop a model-based adaptive health estimation and real-time proactive control to identify gas turbine engine stability risks and avoid them through control action. In this concept, the engine control system actively monitors sensors and actuators, compares them against physical models, and infers which components may be performing poorly and may need to ...

    STTR Phase I 2010 Department of DefenseNavy
  2. Advanced Materials for the Design of Lightweight JP5/JP8/DS2 Fueled Engines for Unmanned Aerial Vehicles (UAVs)

    SBC: Northwest Uld, Inc.            Topic: N10AT001

    Northwest UAV Propulsion Systems proposes using our purpose built heavy fuel engine designed and built in the USA for small unmanned aerial systems in the tier 2 & 3 class. We will be adding a lightweight ceramic material set combined with FEA (Finite Element Analysis) and heavy fuel atomizer (IRAD Project) to create a lightweight engine for a SUAS or STUAS class UAVs. The Ceramic material set is ...

    STTR Phase I 2010 Department of DefenseNavy
  3. A Fast-Response, Electronically Controlled Fuel Injection System for Small Heavy Fuel Engines with Multi-Fuel Capabilities

    SBC: MAINSTREAM ENGINEERING CORPORATION            Topic: N10AT033

    Advances in electronically controlled injection technologies for diesel engines have provided a method to improve medium- to heavy-duty engine performance through increased injection pressures, multiple injections, and injection rate shaping. Although these injection systems have been primarily limited to larger engines, the ability to rapidly and precisely meter fuel for smaller engines is partic ...

    STTR Phase I 2010 Department of DefenseNavy
  4. A Hierarchical and Extendable, Component-Based Simulation Tool for Aircraft Thermal Management Systems

    SBC: CFD Research Corporation            Topic: N19BT025

    The requirements for thermal management on tactical aircraft systems have reached a level at which integrated system design must be considered early in the aircraft design process. An integrated propulsion, power and thermal modeling and simulation design approach is necessary for reduced size, weight and power requirements. At the same time, there is an urgent need for capabilities that enable an ...

    STTR Phase I 2019 Department of DefenseNavy
  5. AI-Driven, Secure Navy Mission Planning via Deep Reinforcement Learning and Attribute-Based Multi-Level Security

    SBC: EH GROUP            Topic: N19BT029

    Current mission planning systems allow strike planners and operations centers to perform time-sensitive strike planning, execution monitoring, and validate mission effects using XML-based tools that visualize time critical attack plan and track plan status vs. execution. In this proposed STTR Phase I design for the Next Generation Navy Mission Planning (NGNMPS) system, we will identify expanded op ...

    STTR Phase I 2019 Department of DefenseNavy
  6. Ambient Noise Interferometry for Passive Characterization of Dynamic Environments

    SBC: ZEL TECHNOLOGIES, L.L.C.            Topic: N10AT004

    Non-invasive, stealthy nature of passive remote sensing combined with its low cost make passive techniques a promising supplement or replacement of traditional active remote sensing techniques. Coherent processing of diffuse wave fields has a proven potential for remote sensing of stationary environments. The proposed research extends noise interferometry to characterization of dynamic environment ...

    STTR Phase I 2010 Department of DefenseNavy
  7. Analysis of Dislocation Density, Recrystallization, and Residual Stress in 5XXX Aluminum using Laser Peening to mitigate Exfoliation Corrosion

    SBC: HEPBURN AND SONS LLC            Topic: N18AT016

    Hepburn and Sons LLC teaming with The Ohio State University, Center for Electron Microscopy and Analysis (CEMAS) propose to research and develop an innovative application of laser peening technology to mitigate exfoliation corrosion, a special type of inter-granular corrosion that occurs on the elongated grain boundaries. Strongly related, these Mg based alloys, when exposed to tensile stresses, c ...

    STTR Phase I 2018 Department of DefenseNavy
  8. A Novel, Microscale, Distributable Sensor Technology for Ionizing Radiation

    SBC: CFD Research Corporation            Topic: DTRA14B004

    Terrorist use of radioactive nuclear materials via nuclear and/or radiological dispersion devices (dirty bombs) is a serious threat. Therefore, it is crucial to detect proliferation of nuclear material. Critical challenges include: (a) high sensitivity detection of signature emissions from radioactive isotopes, and (b) cost-effectiveness for deployment of sensor networks across large storage facil ...

    STTR Phase II 2019 Department of DefenseDefense Threat Reduction Agency
  9. Atomic Triaxial Magnetometer

    SBC: Twinleaf LLC            Topic: N19AT006

    This project develops an atomically-referenced vector magnetometer with a goal of substantial improvements in the drift of the sensor relative to existing solid state sensors such as fluxgate magnetometers.

    STTR Phase I 2019 Department of DefenseNavy
  10. Atomic Triaxial Magnetometer

    SBC: Vescent Photonics LLC            Topic: N19AT006

    Vescent Photonics and MIT Lincoln Labs (MIT-LL) propose to develop a quantum-based vector magnetometer with low size, weight, power, and cost (SWaP+C) for Navy applications. The proposed system will rely on probing magnetically-sensitive, atomic-like transitions of nitrogen-vacancy (NV) centers in diamond to provide stable, high-bandwidth readout of the vector magnetic field with sub-picotesla sen ...

    STTR Phase I 2019 Department of DefenseNavy
US Flag An Official Website of the United States Government