You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Wireless Networked Cryogenic and Minimum Pressure Sensors

    SBC: NANOSONIC INC.            Topic: T13

    This NASA Phase I STTR program would develop high performance, wireless networked cryogenic and minimum pressure sensors for remote monitoring in propulsion systems, using SOI (Silicon on Insulator) NM (nanomembrane) techniques in combination with our pioneering ceramic nanocomposite materials. We will improve the current mechanical and electrical model of semiconductor nanomembrane based sensor ...

    STTR Phase I 2018 National Aeronautics and Space Administration
  2. Wide Range Flow and Heat Flux Sensors for In-Flight Flow Characterization

    SBC: Tao Of Systems Integration Inc            Topic: T2

    The tracking of critical flow features (CFFs) such as stagnation point, flow separation, shock, and transition in flight provides insight into actual aircraft performance/safety. Sensing of these CFFs across flight regimes involves numerous challenges such as a wide temperature/pressure range from subsonic to hypersonic flows. Tao Systems, Mesoscribe Technologies and Virginia Tech propose to devel ...

    STTR Phase I 2010 National Aeronautics and Space Administration
  3. Wide Bandgap Nanostructured Space Photovoltaics

    SBC: Firefly Technologies            Topic: T3

    Firefly, in collaboration with Rochester Institute of Technology, proposes an STTR program for the development of a wide-bandgap GaP-based space solar cell capable of efficient operation at temperatures above 300oC. Efficiency enhancement will be achieved by the introduction of InGaP quantum wells within the active region of the wide-gap base material. The introduction of these nanoscale features ...

    STTR Phase I 2010 National Aeronautics and Space Administration
  4. Volumetric Wavefront Sensing for the Characterization of Distributed-Volume Aberrations

    SBC: Guidestar Optical Systems, Inc.            Topic: AF18AT006

    Modern Directed Energy (DE) missions require target engagements at low elevation angles and long ranges.These engagement geometries require propagation through distributed-volume turbulence. To correct for distributed-volume turbulence effects, an estimation of the turbulence along the propagation path is required. Correcting for these image aberrations will improve the quality of the target image ...

    STTR Phase I 2018 Department of DefenseAir Force
  5. Volumetric Atmospheric Modeling from Point Measurements or a Single Profile

    SBC: Science and Technology in Atmospheric Research (STAR) LLC            Topic: N17AT018

    The Navys atmospheric modeling capabilities do not accurately predict the atmosphere at the sea-air marine boundary layer, creating anomalous visual/electro-optical/infrared propagation conditions, which can be deceiving. The Navys observational capabilities rely on locally-collected point measurements at the sea surface. However, single point collections cannot accurately estimate the atmospheric ...

    STTR Phase I 2017 Department of DefenseNavy
  6. Volume Digital Holographic Wavefront Sensor

    SBC: NUTRONICS, INC.            Topic: AF18AT006

    Nutronics, Inc. and Montana State University propose to develop and evaluate computational methods for a Volume Digital Holographic Wavefront Sensor (VDHWFS).VDHWFS based imaging offers the potential to provide the equivalent of wide field of view adaptive optics (AO) compensated imaging, but without the added complexity of AO components and hardware.Recent result for coherent imaging developed by ...

    STTR Phase I 2018 Department of DefenseAir Force
  7. VLSI Compatible Silicon-on-Insulator Plasmonic Components

    SBC: ITN ENERGY SYSTEMS, INC.            Topic: AF08BT18

    This Small Business Technology Transfer Phase I project will develop ultradense, low-power plasmonic integration components and devices for on-chip manipulation and processing of optical signals. Both passive and active components will be studied. Detailed performance predictions will be obtained through finite element modeling (FEM) of the harmonic Maxwell’s equations. The FEM provides detai ...

    STTR Phase I 2010 Department of DefenseAir Force
  8. VISCARO- Video Information Summarization, Captioning, Analysis, and Rank Ordering

    SBC: DECISIVE ANALYTICS CORPORATION            Topic: N17AT021

    Military and open-source videos contain a wealth of information about entities, concepts, and events of interest to US and coalition forces. Intelligence analysts have access to these video data sources but are severely limited in exploiting the information contained within due to manpower and technical limitations. Unlike most data sources, video data is actually multi-modal. Relevant information ...

    STTR Phase I 2017 Department of DefenseNavy
  9. Virus-Like Particle Based pan-Marburgvirus Vaccine

    SBC: LUNA INNOVATIONS INCORPORATED            Topic: CBD18A002

    Marburg virus (MARV) is a filamentous enveloped non-segmented negative sense RNA virus. This viruse is considered to be extremelydangerous with case fatality rates as high as 88-90%. Extensive efforts have gone towards effective vaccines for MARV prevention, however,none have been successfully established as licensed vaccines. Glycoprotein (GP) is the only surface protein of MARV. There are substa ...

    STTR Phase I 2018 Department of DefenseOffice for Chemical and Biological Defense
  10. Vibration imaging for the characterization of extended, non-cooperative targets

    SBC: Guidestar Optical Systems, Inc.            Topic: AF19AT006

    Locating objects that vibrate is a way to discern potential threats and locate targets. However, current vibrometry technology typically measures only the global vibration of target and cannot create an extended spatial measurement of the vibration profile of the target. These solutions cannot identify what the target is, nor can they locate potential weak spots on the target, because they lack sp ...

    STTR Phase I 2019 Department of DefenseAir Force
US Flag An Official Website of the United States Government