You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. A Portable Multimodality System for in-field Airway Injury Assessment and Compliance Measurement

    SBC: RADIATION MONITORING DEVICES, INC.            Topic: DHP16C006

    Airway compromise is the third leading cause of potentially preventable death on the battlefield.Current evaluation techniques of the airways associated with smoke inhalation injury are highly subjective and lack the sensitivity required of an accurate diagnostic and assessment tool.The problem of detection is further compounded by the late onset of symptoms that in many cases do not present until ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  2. Bio-mathematical Models of Aggregated Tissues & Organ Properties

    SBC: Corvid Innovation LLC            Topic: DHP16A001

    Realistic surgical simulation requires a combination of representative tissue geometry, accurate tissue material properties and lifelike tool-tissue interaction forces. Recent advances in computational power and imaging modalities have provided the capability to represent the anatomical details required for surgical training; however, the mathematical models which govern the underlying tissue pro ...

    STTR Phase I 2016 Department of DefenseDefense Health Agency
  3. Bio-Mathematical Models of Aggregated Tissues & Organ Properties

    SBC: BIOMOJO LLC            Topic: DHP16A001

    BioMojo LLC and the Departments of Mathematics and Biomedical Engineering at the University of North Carolina Chapel Hill, will develop a preliminary bio mathematical model framework to represent how human tissues interact and behave at their boundaries. Tissue interaction properties (e.g. tensile, shear, friction, and so forth) of connective, epithelial, muscular, and nervous tissue including su ...

    STTR Phase I 2016 Department of DefenseDefense Health Agency
  4. Electrotextile Systems for Human Signatures Monitoring

    SBC: MANTEL TECHNOLOGIES, INC.            Topic: DHA17A001

    Investments by the Department of Defense (DOD) have led to the development and demonstration of electronic textiles capable of transforming traditional textile systems into wearable power and data systems. The Defense Health Agency (DHA) has identified an opportunity to leverage advancements in smart garment systems for military personnel to aid in the prediction in performance declines and healt ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  5. Enhanced WAAVES+: A Fast and Accurate Automated USV Scoring Program

    SBC: CORNERSTONE RESEARCH GROUP INC            Topic: DHP16C003

    Cornerstone Research Group (CRG) and the University of Texas (UT) will team to develop a fast and accurate automated analysis program for USV scoring. This automated tool will enable greater research efficiency and throughput allowing greater strides in developing treatments for post-traumatic stress disorder through rodent-based research. Building off prior work by UT on a first generation auto-s ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  6. High Fidelity Computational Models for Aggregated Tissue Interaction in Surgical Simulations

    SBC: CFD RESEARCH CORPORATION            Topic: DHP16A001

    Surgical simulations aiming to support surgeon practices and medical education have attracted enormous research effort over the last two decades. However, the physical reality, especially on simulating aggregated tissue interaction, is still unsatisfactory. In this proposed work, an open source surgery simulation framework, SoFMIS, will be utilized and enhanced with tissue interaction models to a ...

    STTR Phase I 2016 Department of DefenseDefense Health Agency
  7. In-Mask Sensors for Physiological Investigation of Respiratory Exhalation- INSPIRE

    SBC: MAKEL ENGINEERING, INC.            Topic: DHP16C002

    Makel Engineering, Inc. and Sandia National Laboratories propose to demonstrate an advanced multi-modal sensor system suitable for in-situ analysis of exhaled VOCs for pilots, divers and field patients. Our proposed system will combine a micro-gas chromatograph (GC) and miniature ion mobility spectrometer (IMS) for detection of trace amounts of exhaled breath VOCs with miniature solid state sensor ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  8. Mask integrated Volatile Organic Compound (VOC) sensor for real-time warfighter physiological status monitoring in extreme and toxic environments

    SBC: BAYSPEC, INC.            Topic: DHP16C002

    BaySpec Inc., in collaboration with Pacific Northwest National Laboratory, proposes to develop an innovative orthogonal sensor systemthat would be able to detect, identify and quantify the inorganic components of breathing mixes, (i.e., nitrogen, oxygen, carbon dioxide, argon, helium, and water vapor), as well as individual detectable VOCs within the exhaled breath in real-time. The Phase I resear ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  9. Medic-ART: Medics Augmented Reality Trainer

    SBC: APTIMA INC            Topic: DHA17A003

    Navy corpsmen have helped achieve a remarkable survival rate for the warfighters, civilians, and enemy combatants whom they serve. But this success masks significant challenges. Training corpsmen is costly; it addresses primarily the acquisition of skills (rather than maintenance); it fails to convey the perceptual and cognitive skills to handle complex combat wounds; the design of training techno ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  10. Multimodal Imaging Device for Real-time Assessment of Airway Tissue Viability and Compliance after Inhalation Injury

    SBC: PHYSICAL SCIENCES INC.            Topic: DHP16C006

    Inhalation injury is an important cause of morbidity and mortality in both military personnel and the civilian population. Bronchoscopy, currently the gold standard for assessment of inhalation injury, fails to provide submucosal and functional tissue information, both of which are essential for improved prognostic information. Physical Sciences Inc., in collaboration with University of North Caro ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
US Flag An Official Website of the United States Government