You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY21 is not expected to be complete until September, 2022.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Multi Junction Solar cells for Satellite

    SBC: CFD Research Corporation            Topic: MDA09T005

    Higher efficiency solar cells are needed to reduce mass, volume, and cost of DoD space missions. However, to achieve higher efficiency and radiation hardness of the best to date multi-junction photovoltaic (PV) devices, several challenges must be addressed. This project aims to develop: 1) Quantum Well (QW)-based multi-junction cell that exhibits enhanced efficiency, and 2) Radiation-hardened PV c ...

    STTR Phase I 2010 Department of DefenseMissile Defense Agency
  2. An Ultra-High Temperature Ceramic with Improved Fracture Toughness and Oxidation Resistance

    SBC: Plasma Processes, LLC            Topic: MDA09T002

    Hypersonic missile defense systems are being designed to reach global threats. During flight, external surfaces are predicted to reach temperatures in excess of 2200C. As a result, innovative, high performance thermal protection systems (TPS) are of great demand. Among ultra-high temperature ceramics (UHTC), it is well known that ZrB2- and HfB2-based materials have high melting temperatures and ...

    STTR Phase I 2010 Department of DefenseMissile Defense Agency
  3. Development for Radiation Hardened Applications of Advanced Electronics Materials, Processes, and Devices

    SBC: RNET TECHNOLOGIES, INC.            Topic: MDA09T006

    The Missile Defense Agency (MDA) seeks technical investigations related to the development and application of advanced electronic materials, processes, and devices to meet its need for radiation hardened, high performance electronics for critical space and missile applications. With the advent of smaller transistor dimensions and reductions in price per bit, significant changes in materials and pr ...

    STTR Phase I 2010 Department of DefenseMissile Defense Agency
  4. Contamination-free, Ultra-rapid Reactive Chemical Mechanical Polishing (RCMP) of GaN substrates

    SBC: Sinmat Inc            Topic: MDA09T001

    Gallium Nitride (GaN) substrates are ideal materials for fabrication of high-power and high-frequency devices based on III-V materials. The current state-of-the-art Chemical Mechanical Polishing (CMP) methods are plagued by several challenges, including, surface charge affects due to surface contamination, and sub-surface damages, which can limit the quality of III-V devices. Furthermore, there is ...

    STTR Phase I 2010 Department of DefenseMissile Defense Agency
  5. Fabrication of Ta-Hf-C-based Ultra High Temperature Composites via a

    SBC: UES, Inc.            Topic: MDA09T002

    This Phase I STTR program seeks a new fabrication method to produce stronger (>100 kpsi) and tougher (>10 MPa m1/2) ultra high temperature Ta-Hf-C-based composites (UHTC) with an outstanding oxidation resistance for use as thermal protection systems for hypersonic applications, as well as for advanced rocket nozzle throat components. UES will apply a novel "Top Down" approach to control the micro ...

    STTR Phase I 2010 Department of DefenseMissile Defense Agency
  6. Software Defined Multi-Channel Radar Receivers for X-band Radars

    SBC: DGNSS Solutions, LLC            Topic: MDA09T003

    The primary objective of the proposed research is to develop proof of concept of a software programmable X-Band radar system using low cost antenna array technology with digital beamforming architecture based on multiple receiver channels. The performance objectives will aim at a minimum of 400 MHz instantaneous bandwidth and a minimum instantaneous dynamic range of 52 dB. The objective of the t ...

    STTR Phase I 2010 Department of DefenseMissile Defense Agency
  7. Fusion of IR and Radar for Enhanced Threat Recognition and Interception (FIRE-TRAIN)

    SBC: Charles River Analytics, Inc.            Topic: MDA12T001

    The proliferation of sophisticated ballistic missile systems threatens the ability of the U.S. to project military power and defend its deployed forces, its allies, and possibly even the homeland. Adversaries continue to improve their ballistic missile technologies, and are expected to incorporate multiple warheads, countermeasures, and decoys. The AEGIS systemthe sea-based component of the U.S. b ...

    STTR Phase I 2013 Department of DefenseMissile Defense Agency
  8. Feature-Aided RF/IR Track Correlation

    SBC: Physical Sciences Inc.            Topic: MDA12T001

    Missile tracking sensors such as radar and EO/IR are often called upon to track constellations of multiple closely spaced objects, and recognize pairs of matching tracks from each sensor"s view. The outcome of this track correlation process is crucial for missile defense interceptors, as any failure to identify matches with certainty, for example because of an excessive number of tracks associate ...

    STTR Phase I 2013 Department of DefenseMissile Defense Agency
  9. IR/RF SPARK- IR/RF fusion using Stochastic Programming And Robust Kinematic features

    SBC: Scientific Systems Company Inc.            Topic: MDA12T002

    SSCI and MIT team will approach a problem of fusing target data from sensor of different phenomenology using Probabilistic programming technology, Stochastic inference techniques based on Markov chain simulation, and Robust kinematic features. These methods will allow us to estimate the extend of information on metric, material, and kinematic properties of the observed low resolution targets av ...

    STTR Phase I 2013 Department of DefenseMissile Defense Agency
  10. Innovative Polishing Technology for Fabrication of High Performance Epi-ready GaSb Substrates

    SBC: Sinmat Inc            Topic: MDA12T003

    Antimony containing III-V semiconducting compounds are particularly attractive for the fabrication of a wide variety of electronic and optoelectronic devices such as photo detectors operating in the long wave infrared wavelength (12-32µm) range. The production of epi quality GaSb wafers still remains one of the important problems for rapid commercialization of GaSb devices. Sinmat Inc. proposes a ...

    STTR Phase I 2013 Department of DefenseMissile Defense Agency
US Flag An Official Website of the United States Government