You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Highly Sensitive Flash LADAR Camera

    SBC: VOXTEL, INC.            Topic: T901

    To address the urgent need for 3D flash-lidar technology for landing on solar system bodies and for spacecraft rendezvous and docking with satellites, an effort is proposed to fabricate, characterize, and test a versatile, high-sensitivity InGaAs APD 3D flash lidar and to advance the technology-readiness level (TRL) of lidar technologies suitable for NASA mission requirements. Leveraging an existi ...

    STTR Phase II 2016 National Aeronautics and Space Administration
  2. Improved Forecasting of Solar Particle Events and their Effects on Space Electronics

    SBC: CFD RESEARCH CORPORATION            Topic: T602

    High-energy space radiation from Galactic Cosmic Rays and Solar Particle Events (SPEs) pose significant risks to equipment and astronaut health in NASA missions. Energetic particles from SPEs associated with flares and coronal mass ejections (CMEs) may adversely affect not only beyond-Low-Earth-Orbit missions, but also aircraft avionics, communications, and airline crew/passenger health. It is cru ...

    STTR Phase II 2016 National Aeronautics and Space Administration
  3. Bio-Mathematical Models of Aggregated Tissues & Organ Properties

    SBC: BIOMOJO LLC            Topic: DHP16A001

    BioMojo LLC and the Departments of Mathematics and Biomedical Engineering at the University of North Carolina Chapel Hill, will develop a preliminary bio mathematical model framework to represent how human tissues interact and behave at their boundaries. Tissue interaction properties (e.g. tensile, shear, friction, and so forth) of connective, epithelial, muscular, and nervous tissue including su ...

    STTR Phase I 2016 Department of DefenseDefense Health Agency
  4. High Fidelity Computational Models for Aggregated Tissue Interaction in Surgical Simulations

    SBC: CFD RESEARCH CORPORATION            Topic: DHP16A001

    Surgical simulations aiming to support surgeon practices and medical education have attracted enormous research effort over the last two decades. However, the physical reality, especially on simulating aggregated tissue interaction, is still unsatisfactory. In this proposed work, an open source surgery simulation framework, SoFMIS, will be utilized and enhanced with tissue interaction models to a ...

    STTR Phase I 2016 Department of DefenseDefense Health Agency
  5. Bio-mathematical Models of Aggregated Tissues & Organ Properties

    SBC: Corvid Innovation LLC            Topic: DHP16A001

    Realistic surgical simulation requires a combination of representative tissue geometry, accurate tissue material properties and lifelike tool-tissue interaction forces. Recent advances in computational power and imaging modalities have provided the capability to represent the anatomical details required for surgical training; however, the mathematical models which govern the underlying tissue pro ...

    STTR Phase I 2016 Department of DefenseDefense Health Agency
  6. Prediction of Strutural Response and Fluid-Induced Vibration in Turbomachinery

    SBC: CFD RESEARCH CORPORATION            Topic: T102

    Advanced turbomachinery components play a critical role in launch vehicle and spacecraft liquid rocket propulsion systems. To achieve desired efficiencies, extremely tight tolerances are often imposed between inducer blades and shrouds or other system components which sets up strong interactions that influence both the aerodynamics and the structural performance of blades and vanes. These transien ...

    STTR Phase I 2016 National Aeronautics and Space Administration
  7. Unified In-Space Propulsion Framework for Prediction of Plume-Induced Spacecraft Environments

    SBC: CFD RESEARCH CORPORATION            Topic: T102

    Chemical contamination of spacecraft components as well as thermal and force loading from firing liquid propellant thrusters are critical concerns for in-space propulsion applications. Gas molecular contamination and liquid droplet deposition due to incomplete combustion threaten to damage surface materials, sensitive instruments and optical sensors, and poses major risks for mission success. Liqu ...

    STTR Phase I 2016 National Aeronautics and Space Administration
  8. High-Gain, Low-Excess-Noise APD Arrays for Near-Single-Photon-Sensitive LADAR

    SBC: VOXTEL, INC.            Topic: T901

    One of the challenges facing missions to other planetary bodies including Earth's Moon, Mars, Venus, Titan, Europa; and proximity operations (including sampling and landing) on small bodies such as asteroids and comets' is the ability to provide accurate altimetry for descent, then assess safe landing sites by surveying the landscape. To address NASA's need for space-hardened planetary entry, desc ...

    STTR Phase I 2016 National Aeronautics and Space Administration
  9. Empirical Optimization of Additive Manufacturing

    SBC: Advratech            Topic: T1204

    In this Phase I STTR project, pursuant to the Materials Genome Initiative (MGI) and Integrated Computational Materials Engineering (ICME) interests, the proposed collaborative effort between WSU and Advratech will represent the first AM optimization framework of its kind, constructed entirely from experimental sensor data collected in-situ. Rather than using in-process data to inform limited "phy ...

    STTR Phase I 2016 National Aeronautics and Space Administration
  10. Highly Efficient Closed-Loop CO2 Removal System for Deep-Space ECLSS

    SBC: TDA RESEARCH, INC.            Topic: T604

    TDA Research Inc.(TDA) in collaboration with University of Puerto Rico ? Mayaguez (UPRM is proposing to develop a highly efficient CO2 removal system based on UPRM proprietary strontium exchanged silico-alumino-phosphate (Sr-SAPO-34) for closed loop space craft cabin air re-vitalization during deep space missions.

    STTR Phase I 2016 National Aeronautics and Space Administration
US Flag An Official Website of the United States Government