You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY20 is not expected to be complete until September, 2021.

  1. Highly-Resolved Wall-Shear-Stress Measurement in High Speed Flows

    SBC: Interdisciplinary Consulting Corporation            Topic: AF14AT08

    The Interdisciplinary Consulting Corporation (IC2), in partnership with the University of Florida (UF) and Innoveering, LLC, proposes to develop an innovative precision micro-scale surface-mountable sensor for measuring local wall shear stress in [a] high speed flow field (approximately 0.8 < M < 5) to enable characterization of critical boundary layer flows in ground and flight tests in response ...

    STTR Phase II 2016 Department of DefenseAir Force
  2. Modeling and Simulation for Design, Development, Testing and Evaluation of Autonomous Multi-Agent Models

    SBC: Eduworks Corporation            Topic: AF15AT14

    U.S. forces are benefiting from automation systems of unprecedented sophistication, empowered by advances in artificial intelligence (AI) and human-systems interaction. In air combat operations, onboard intelligent assistants monitor the aircraft, interpret and carry out commands, and report aircraft and system status, mission progress, threats and alerts. Because pilots and agents are part of a n ...

    STTR Phase II 2016 Department of DefenseAir Force
  3. Vacuum Integrated System for Ion Trapping

    SBC: Coldquanta, Inc.            Topic: A15AT009

    We propose to develop a compact, integrated ion trap quantum system for quantum sensor, timekeeping, and computing applications. To do so, we leverage ColdQuantas expertise in miniature ultra-high vacuum (UHV) and atom chip technology and Duke Universitys expertise in microfabricated surface ion traps and quantum information processing experiments. We will produce a manufacturable, commercializa ...

    STTR Phase II 2016 Department of DefenseArmy
  4. Hybrid Battery/Supercapacitor Energy Storage Device

    SBC: ADA Technologies, Inc.            Topic: A15AT010

    ADA Technologies, Inc. (ADA) and Dr. Massoud Pedram at the University of Southern California (USC) have successfully completed a Phase I STTR effort for the development of a lithium ion (Li-ion)/ supercapacitor hybrid electrical energy storage system (HEESS) to afford pulse power characteristics (projected ~10 kW/kg) in a high energy system (100-150 Wh/kg). The system is enabled via a constant cur ...

    STTR Phase II 2016 Department of DefenseArmy
  5. An Ultra-Compact Low-Power THz Radio SoC with On-Chip Antenna and Energy Harvesting

    SBC: Digital Analog Integration, Inc.            Topic: A15AT005

    There is an unmet demand for ultra-low-power, ultra-compact and low-cost radios to address emerging sensing and communication needs for military and commercial applications such as IoT/IoE. To overcome the limitations in existing bulky and power hungry radios, we propose a disruptive solution by integration of a nano-scaled THz transceiver, on-chip antenna, and energy harvesting circuits in a form ...

    STTR Phase II 2016 Department of DefenseArmy
  6. Advanced Printed Circuit Board Design Methods for Compact Optical Transceiver

    SBC: VOXTEL, INC.            Topic: A15AT001

    To meet the U.S. military needs for hardened laser-ranging sensors for munitions applications, a compact, high-repetition-rate, high-pulse-energy laser rangefinder will be developed consisting of a temperature-stabilized avalanche photodiode (APD) receiver, with a few photons equivalent sensitivity, and a miniature diode-pumped microchip laser. An existing integrated circuit design will be updated ...

    STTR Phase II 2016 Department of DefenseArmy
  7. Improved Synthesis and Characterization of New Energetic Compounds

    SBC: TDA Research, Inc.            Topic: N16AT021

    The Navy seeks new energetic and oxidizing ingredients for use in propellant and explosive formulations of modern weapons systems. With recent developments in the design and synthesis of new energetic molecules, we have the opportunity to take the steps needed before these materials can successfully transition to use in next generation propulsion and ordnance systems. TDA Research and the Universi ...

    STTR Phase I 2016 Department of DefenseNavy
  8. A New MOCVD Platform for Commercially Scalable Growth of-Ga2O3 Device Structures

    SBC: AGNITRON TECHNOLOGY, INC            Topic: N16AT023

    Future DoD and Navy missions require advances in current high voltage power electronics technology as existing technology and even recent promising advances in Silicon Carbide and Gallium Nitride based materials lack fundamental material properties to deliver switching capabilities needed for future high power converter applications, advanced radar and propulsion systems. Much interest has been re ...

    STTR Phase I 2016 Department of DefenseNavy
  9. Computation of Structural Energetic Materials Under Shock Loading: a Meso-Scale Framework

    SBC: Streamline Numerics, Inc.            Topic: AF16AT23

    Structural energetic materials or multifunctional energetic materials offer the ability to combine the high energy release rates of traditionalhigh explosives with structural strength. When successfully formulated therefore they can lead to light-weight, high-performance and hithertoinaccessible designs of munitions. The key feature of structural energetic materials (SEMs), perhaps even more so th ...

    STTR Phase I 2016 Department of DefenseAir Force
  10. Integrated Computational Material Engineering Approach to Additive Manufacturing for Stainless Steel (316L)

    SBC: SCIENTIFIC FORMING TECHNOLOGIES CORPORATION            Topic: N16AT022

    We are proposing to identify an ICME architecture that will enable the multi-scale modeling of additive manufacturing (AM) process at both the component level as well as at the meso-scale level such that the final part quality and performance can be predicted accurately. At the component level, the proposed ICME framework would help in predicting residual stresses, distortion and the necessary sup ...

    STTR Phase I 2016 Department of DefenseNavy
US Flag An Official Website of the United States Government