You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY21 is not expected to be complete until September, 2022.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Small Team Command, Control, Communications and Situational Awareness (C3SA), SOCOM08-001

    SBC: CEEBUS TECHNOLOGIES, LLC            Topic: SOCOM08001

    SOF combat swimmers have a need for the continuous monitoring of each others relative position while diving and for the capability of being able to communicate with each other to help establish a common operational picture (COP).The C3SA system was previously developed under SBIR Topic SOCOM08-001 thru the receipt of both Phase I and Phase II SBIR awards.The C3SA established a stand-alone network ...

    STTR Phase II 2018 Department of DefenseSpecial Operations Command
  2. DSM Autonomy System

    SBC: EMERGENT SPACE TECHNOLOGIES, INC.            Topic: T11

    Increasing the level of spacecraft autonomy for any future space mission will make it more affordable and capable, allowing NASA to do more science with less operations costs. For future Distributed Space Missions (DSMs) however, spacecraft autonomy is critical to reducing costs to make the missions affordable and practical. The use of multiple satellites to simultaneously sample science observati ...

    STTR Phase II 2018 National Aeronautics and Space Administration
  3. Highly Efficient Closed-Loop CO2 Removal System for Deep-Space ECLSS

    SBC: TDA Research, Inc.            Topic: T6

    TDA Research Inc.(TDA) in collaboration with University of Puerto Rico – Mayaguez (UPRM is proposing to develop a highly efficient CO2 removal system based on UPRM proprietary strontium exchanged silico-alumino-phosphate (Sr-SAPO-34) sorbent for closed loop space craft cabin air re-vitalization during deep space missions. In the Phase I work, we successfully completed bench-scale proof-of-concep ...

    STTR Phase II 2018 National Aeronautics and Space Administration
  4. An Additive Manufacturing Technique for the Production of Electronic Circuits

    SBC: MORNINGBIRD MEDIA CORPORATION            Topic: T12

    Under the support of a FY 2016 NASA Phase I Small Business Technology Transfer (STTR) contract (NASA contract number NNX16CM40P), Morningbird Media Corporation in collaboration with Alabama A&M University Research, Innovation in Science and Engineering (AAMU-RISE) Foundation, has devised a unique method for an additive manufacturing technique for the direct 3D printing of functional electronics. T ...

    STTR Phase II 2018 National Aeronautics and Space Administration
  5. High Performance Simulation Tool for Multiphysics Propulsion Using Fidelity-Adaptive Combustion Modeling

    SBC: STREAMLINE NUMERICS, INC.            Topic: T1

    The innovation proposed here is a Pareto-Efficient Combustion (PEC) model for fidelity-adaptive combustion modeling capability implemented into the Loci-STREAM CFD code for use at NASA for simulation of rocket combustion. This work will result in a high-fidelity, high-performance multiphysics simulation capability to enhance NASA’s current simulation capability of unsteady turbulent reacting flo ...

    STTR Phase II 2018 National Aeronautics and Space Administration
  6. Launch Weather Decision Support System

    SBC: Radiometrics Corporation            Topic: T1

    NASA wants a cost-effective atmospheric remote sensing system providing accurate temperature and humidity profiles to least 10 km height in clear and cloudy conditions. Radiometrics Microwave Profiler (MP) products currently provide accurate temperature and humidity profiles in good agreement with radiosondes to 3 km height. Good agreement can be extended beyond 10 km height using variational retr ...

    STTR Phase II 2018 National Aeronautics and Space Administration
  7. uG-LilyPond- Floating Plant Pond for Microgravity

    SBC: Space Lab Technologies, LLC            Topic: T7

    Regenerative space life support will undoubtedly require food production, to recover nutrients and close the carbon loop in a spacecraft habitat. Aquatic plants have enormous potential for edible biomass production but have been little studied as potential food crops for space applications. The proposed μG-LilyPond™ is an autonomous environmentally controlled floating plant cultivation system ...

    STTR Phase II 2018 National Aeronautics and Space Administration
  8. Next Generation Water Recovery for a Sustainable Closed Loop Living

    SBC: Faraday Technology, Inc.            Topic: T6

    Among numerous technological advances sought in order to facilitate human space travel, innovations are needed that supports the mass- and energy-efficient maintenance of closed air, water, and waste systems in spacecraft habitats that operate on planetary environments such as Mars and within microgravity. Waste-water treatment system on board the ISS is one such system that has lifetime/durabilit ...

    STTR Phase II 2018 National Aeronautics and Space Administration
  9. Towards a Turn-key Software Suite for Controlling Complex Remote Robots using English-language Electronic Procedures

    SBC: Traclabs Inc.            Topic: T4

    There is a disconnect between the mission operation languages used by various NASA robots and by flight controllers or crew members. This disconnect unduly burdens mission operators, as it requires the involvement of expert robot programmers to define each activity. To eliminate this burden, we propose that robots in space (whether autonomous or remotely commanded by humans) should be commanded us ...

    STTR Phase II 2018 National Aeronautics and Space Administration
  10. Multiphase Modeling of Solid Rocket Motor Internal Environment

    SBC: CFD Research Corporation            Topic: T1

    Solid rocket motor (SRM) design requires detailed understanding of the slag accumulation process in order to: predict thrust continuity, optimize propellant conversion efficiency, predict coning effects from sloshing, and to assess potential orbital debris (slag) hazard. Current state-of-the-art models for SRM environment do not have the capability to simulate the accumulation and dynamics of slag ...

    STTR Phase II 2018 National Aeronautics and Space Administration
US Flag An Official Website of the United States Government