You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY21 is not expected to be complete until September, 2022.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Combat Casualty Handoff Automated Trainer (CCHAT)

    SBC: SOAR TECHNOLOGY, INC.            Topic: DHA17B001

    Combat casualty handoffs are critical communication moments during which responsibility for the patient and important casualty information is transferred between providers. The nature of these handoffs requires specialized training, for which no standardized framework currently exists. The proposed effort aims to develop a capability, compatible with current DoD systems, that provides caregivers w ...

    STTR Phase I 2018 Department of DefenseDefense Health Agency
  2. CCHAT Handoff Protocol

    SBC: SOAR TECHNOLOGY, INC.            Topic: DHA17B002

    Research has identified that handoffs are particularly important communication processes, during which communication error can lead to patient safety situations. Organizations have created standard practices and training materials to encourage teamwork communication for handoffs, however these do not necessarily capture the needs of military medicine of combat casualty care. Combat casualty handof ...

    STTR Phase I 2018 Department of DefenseDefense Health Agency
  3. Oxygen Production and Delivery on Demand

    SBC: Global Research and Development Inc.            Topic: DHA17B005

    This proposal is in response to the Defense Health Agency 2017 Phase I SBIR topic 17B-005.The approach is the use of a membrane oxygen pump using newly developed nano-thickness membranes with all the layers less than 1 micron total.Nanometer thickness membranes enable more oxygen output per surface area at temperatures of 300-600 C than current state-of-the -art 600-800 C membranes that are 50-300 ...

    STTR Phase I 2018 Department of DefenseDefense Health Agency
  4. Griffon Test Suite

    SBC: SOAR TECHNOLOGY, INC.            Topic: DHA17C001

    In this proposal we support the development of a hypoxia test battery by designing and developing a domain general tool suite for processing, synchronizing, and evaluating data from cognitive, behavioral, and physiological measures.The proposed Griffon Tool Suite addresses many of the practical requirements demanded by a flexible test battery. The effort falls into three major thrusts.First, we pr ...

    STTR Phase I 2018 Department of DefenseDefense Health Agency
  5. Compact Thermal Management System for Laser Systems

    SBC: Spectral Energies, LLC            Topic: N18AT001

    The use of laser technologies and high-power electronics is rapidly being incorporated into tactical platforms for imaging, target designation, and range finding. Electronic equipment including lasers demand power from a tactical aircraft and produce large amounts of thermal energy as a waste product. Current thermal management technologies will not be sufficient for future aircraft as thermal man ...

    STTR Phase I 2018 Department of DefenseNavy
  6. Meaning-Aligned Record Synthesis for Training Emerging Capabilities (MARSTEC)

    SBC: SOAR TECHNOLOGY, INC.            Topic: N18AT003

    Operational experts collect recorded data about emerging tactics, techniques, and procedures (TTPs) from sources such as live and virtual training exercises, and numerous test and evaluation simulations. However, instructional designers cannot easily reuse the recorded data to create new training. Without sufficient access to operational experts, expert knowledge is inaccessible and fragmented, of ...

    STTR Phase I 2018 Department of DefenseNavy
  7. Low-cost production of ultra-low defect GaN-based power electronics

    SBC: Qrona Technologies LLC            Topic: N18AT004

    GaN power semiconductors offer a technological breakthrough for improving the performance of power electronics including power density, conversion efficiency, and reliability of power converters. These are the three most critical requirements for military, aerospace and many commercial applications. In this STTR program, Qrona Technologies will collaborate with the University of Central Florida to ...

    STTR Phase I 2018 Department of DefenseNavy
  8. Hot Filament CVD technology for disruptive, high-throughput SiC epitaxial growth reactors

    SBC: TrueNano, Inc            Topic: N18AT004

    TrueNano, Inc. will in collaboration with the University of Colorado and industry partners, develop a novel single-wafer, high-throughput hot filament CDV reactor for the growth of high quality silicon carbide (SiC) epitaxial layers, suitable for the next generation of power electronic devices and systems. This includes the design and simulation of the reactor, the development of a throughput mode ...

    STTR Phase I 2018 Department of DefenseNavy
  9. Innovative additive manufacturing (AM) process for successful production of 7000 series aluminum alloy components using Smart Optical Monitoring Syste

    SBC: Sensigma Llc            Topic: N18AT005

    Naval aircraft components are routinely made of 7000 series aluminum alloys due to their strength, weight and fatigue properties. Present Additive Manufacturing (AM) processes falls short of producing 7000 series Al alloys successfully due to lack of porosity, thermal and composition control. In-situ methods implemented to date largely only yield information about the component surface and other m ...

    STTR Phase I 2018 Department of DefenseNavy
  10. Laser Additive Manufacturing of Seven Thousand Series Aluminum Aircraft Components (LAM-STAAC)

    SBC: MV Innovative Technologies LLC (DBA: Opt            Topic: N18AT005

    Alloys of aluminum in the 7000 series are known to have good weight, strength, and fatigue properties and are commonly used in Naval aircraft components. Recent manufacturing trends are increasingly focused on additive manufacturing (AM) methods as a way to reduce lead time, cost, and to improve part performance. Current additive manufacturing techniques are unable to fabricate parts in 7000 serie ...

    STTR Phase I 2018 Department of DefenseNavy
US Flag An Official Website of the United States Government