You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Recovery Act- Development of a Fiber Based Source of High Average Power Ultrafast Pulses at 2.0 Microns

    SBC: Kapteyn-Murnane Laboratories, Inc.            Topic: 04d

    Bright coherent light sources in the soft x-ray region of the spectrum are useful for a variety of applications of interest to DOE in the basic sciences, nanoscience and biology, and for technological applications. At Free-Electron Laser Facilities, peak power output of the x-ray pulses is enhanced by using a mid-infrared laser pulse instead of a near-infrared pulse. The current front end for mid- ...

    STTR Phase II 2010 Department of Energy
  2. Climate Control Technology for Fossil Energy

    SBC: NANOSONIC INC.            Topic: 24f

    Concern over CO2 emissions and global greenhouse effects has prompted new uses for reclaimed CO2 effluent from coal fired power plants. Similarly, volatile organic solvent emissions have prompted an initiative to identify cleaner solvents for high performance polymer processing, particularly when such processing requires large volumes of environmentally unfriendly, toxic organic solvents. Furthe ...

    STTR Phase I 2010 Department of Energy
  3. Bulk Thermoelectric Materials

    SBC: NANOSONIC INC.            Topic: 03b

    This DOE SBIR/STTR program will result in the commercialization of a low-cost anostructured composite thermoelectric device. Such devices represent the next generation solution for an increasingly strained energy market by converting existing waste heat into electrical power. More waste heat is generated by the combination of industry and automobiles than the total contribution of all renewable en ...

    STTR Phase I 2010 Department of Energy
  4. Novel Module Architecture Development for Increased Reliability and Reduced Costs

    SBC: Creative Light Source, Inc            Topic: 07a

    Statement of Problem: The US DOE has set a goal to advance photovoltaics (PV) technology to reach installed costs of less than $1/Watt. This requires module costs below $0.50/ Watt. Thin film PV provides the lowest documented production cost per watt ($0.67) of any PV technology. Module reliability has a direct impact on the levalized cost of energy (LCOE), or the cost of the energy produced by ...

    STTR Phase I 2013 Department of Energy
  5. Practical Fiber Delivered Laser Ignition Systems for Vehicles

    SBC: Seaforth LLC            Topic: 08b

    Improved ignition methods are needed for advanced vehicle combustion systems, in particular those that allow reliable ignition of lean mixtures in gasoline engines at elevated pressures. Laser ignition is a candidate technology having the potential to address these needs. However, despite more than 40 years of laser ignition research, the technology is not yet in commercial use. A critical proble ...

    STTR Phase I 2013 Department of Energy
  6. Biological CO2 Fixation for the Production of Formic Acid Powered by Sugars

    SBC: Gate Fuels Incorporated            Topic: 12a

    Formic acid (FA, CH2O2) is the simplest carboxylic acid. It is mainly used as a preservative and antibacterial agent in livestock feed. A significant fraction of FA is used in the leather-processing, textile and rubber industries and a small fraction of formic acid is used as a cleaning agent replacing mineral acids. Aqueous FA is a promising liquid hydrogen-storage carrier with a hydrogen storage ...

    STTR Phase I 2013 Department of Energy
  7. 1200 V/50 A AlGaN-GaN-Si MOS-HFETs and Schottky Rectifiers

    SBC: GENESIC SEMICONDUCTOR INC.            Topic: 11c

    DoEs recent emphasis on increasing fuel economy requires electrification of the vehicle powertrain, thus leading to extended range electric vehicles (EREVs), hybrid electric vehicles (HEVs), battery electric vehicles (BEV) and fuel cell electric vehicles (FCEV). All electric propulsion systems require high current, high-voltage (600 V-1200 V), low-loss power semiconductor switches. Present electri ...

    STTR Phase I 2013 Department of Energy
  8. Synthesis of a Potential Fast Ionic Conductor for Mg+ Ions

    SBC: POWDERMET INC            Topic: 15b

    Development of a solid with high conductivity of Mg2+ cations will allow application of that substance as membrane in magnesium-air batteries. These batteries will be much cheaper, safer, and at the same time store much more energy than lead-, lithium- or sodium batteries with the same weight. Such batteries would be ideal for electric vehicles and for the off-peak storage of renewable elect ...

    STTR Phase I 2013 Department of Energy
  9. Virtual Accelerator Support for HPC Clouds

    SBC: RNET TECHNOLOGIES INC            Topic: 02a

    Due to huge levels of computing parallelism and higher performance per watt, comuting accelerators are crucial for increasing HPC efficiency. This is economically significant for small and medium size manufacturing companies (SMMs) and essential for transition to Exascale computing. However, due to high procurement costs, in-house maintenance of an accelerated HPC cluster is prohibitive for many ...

    STTR Phase I 2013 Department of Energy
  10. Cavity Enhanced Thomson Scattering System for Low Temperature Plasmas

    SBC: Seaforth LLC            Topic: 30a

    Electrons play a very key role in plasma chemistry and dynamics of low temperature plasmas. Improved capability for measuring electron number density, ne, and electron energy distribution function, EEDF, in weakly ionized low temperature plasmas would benefit both fundamental study and application areas. For example, the capability would directly benefit emerging research targeted at modifying and ...

    STTR Phase I 2013 Department of Energy
US Flag An Official Website of the United States Government