You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Wireless Torque Sensor for Condition Based Maintenance

    SBC: Albido Corporation            Topic: N11AT030

    In recent years, the need for highly reliable, durable and non-intrusive systems for monitoring the health condition of naval structures becomes more and more recognized. Of particular importance is the condition based maintenance of Navy rotating machinery (motors, generators, pumps, gear systems, etc.). Such Structural Health Monitoring (SHM) systems should be able to detect failures in their ea ...

    STTR Phase II 2013 Department of DefenseNavy
  2. Wide-Area Laser Additive Manufacturing in Metals with Adaptive Beam Shaping (WALAM-ABS)

    SBC: MV INNOVATIVE TECHNOLOGIES, LLC            Topic: N17AT030

    Optonicus proposes development of the Wide-Area Laser Additive Manufacturing in Metals with Adaptive Beam Shaping (WALAM-ABS) laser additive manufacturing (LAM) system. The WALAM-ABS metal additive manufacturing system will solve long-standing drawbacks imposed by current single-point selective laser melting LAM technology through the use of wide-area processing based on proprietary multi-beam fib ...

    STTR Phase II 2018 Department of DefenseNavy
  3. Thermal-Shock-Resistant Sensor Windows and Domes for High-Speed Flight Made of Low-Expansion Ceramics

    SBC: Materials and Systems Research, Inc.            Topic: N08T003

    This Small Business Technology Transfer Research (STTR) Phase II proposal from Materials and Systems Research, Inc. (MSRI) and University of Utah (research institution) seeks to fabricate single-phase, polycrystalline tungstate ceramics with densities greater than 99.95% and a mean grain size of less than 1 um. These ceramics have been chosen because of their low thermal expansion and low elastic ...

    STTR Phase II 2010 Department of DefenseNavy
  4. Synergistic MIMO Radar and Data Adaptive Signal Processing Experimentation

    SBC: INTEGRATED ADAPTIVE APPLICATIONS, INC            Topic: N11AT002

    The proposed work seeks to clearly demonstrate the advantage of the multiple-input multiple-output (MIMO) radar architecture over a similar single-input multiple-output (SIMO) or phased array system; the benefit of applying data-adaptive signal processing techniques in favor of their data-independent counterparts; and the utility of transmitting advanced probing waveforms as opposed to conventiona ...

    STTR Phase II 2013 Department of DefenseNavy
  5. Situational Awareness for Mission Critical Ship Systems

    SBC: IERUS TECHNOLOGIES INC            Topic: N18AT009

    The US Navy operates a vast fleet of combat and support vessels with complex power control systems under the control and decision authority of human operators. Several current resources such as SPY-1D radar and Vertical Launch System (VLS) and future resources such as railgun, AMDR, and high energy laser (HEL) are energy hungry, exceeding current and planned power generation capability when deploy ...

    STTR Phase I 2018 Department of DefenseNavy
  6. Situational Awareness for Mission Critical Ship Systems

    SBC: IERUS TECHNOLOGIES INC            Topic: N18AT009

    With the advent of the Navy’s newest classes of all-electric vessels, the interdependence and functional correlation of the power plant with other mission-critical ship systems such as integrated cooling, weapons, navigation, air surveillance, and IT control network systems, maintaining optimal oversight and control of power distribution aboard ship becomes increasingly challenging. As the opera ...

    STTR Phase II 2019 Department of DefenseNavy
  7. Seamless Wireless Charging of Micro and Small Unmanned Aerial System Through Local Power Transmission Infrastructure

    SBC: EH GROUP INC            Topic: N19AT019

    Wireless charging of unmanned aerial system (UAS) platforms from the environment has the potential to greatly increase flight and mission times. A promising option is to use electromagnetic fields from the power transmission infrastructure as an energy source. EH Group and the University of Alabama propose a design for UAS wireless charging in the near-field environment of the commercial power tra ...

    STTR Phase I 2019 Department of DefenseNavy
  8. Safe High Voltage Cathode Materials for Pulsed Power Applications

    SBC: SCIENTIC INC            Topic: N11AT035

    A high-voltage, high-capacity, inexpensive cathode material for lithium-ion batteries (LIBs) is proposed. The cathode material employs carbon nanotubes and additional nanostructures to support efficient transport of Li ions. The resulting LIBs will support high transient and pulsed loads while offering enhanced safety and lifecycle performance. Proof-of-concept LIB cells were demonstrated in Phase ...

    STTR Phase II 2013 Department of DefenseNavy
  9. Refractory Metal Coating for Electromagnetic Launcher Rails

    SBC: TDA RESEARCH, INC.            Topic: N10AT025

    Electromagnetic launchers or rail guns are a key component of the Navy’s all-electric ship of the future, but they lack the durability required for repeated firings. TDA Research and the University of Nevada, Reno (UNR) are developing a tough, durable and conductive refractory metal coating that will protect the copper alloy conductors (rails) from the extreme heat and wear conditions inside the ...

    STTR Phase I 2010 Department of DefenseNavy
  10. Quench Monitoring and Control System for High-Temperature Superconducting Coils

    SBC: ADVANCED CONDUCTOR TECHNOLOGIES LLC            Topic: N19AT016

    The Navy has been developing superconducting systems, based on high-temperature superconductors (HTS), for future use on Navy ships. One of the challenges associated with superconducting magnets is the possibility of a quench, which is an event where a local hot spot develops within the superconductor that quickly spreads throughout the device, driving it into its normal and dissipative state. Sen ...

    STTR Phase I 2019 Department of DefenseNavy
US Flag An Official Website of the United States Government