You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. High Fidelity Computational Models for Aggregated Tissue Interaction in Surgical Simulations

    SBC: CFD RESEARCH CORPORATION            Topic: DHP16A001

    Surgical simulations aiming to support surgeon practices and medical education have attracted enormous research effort over the last two decades. However, the physical reality, especially on simulating aggregated tissue interaction, is still unsatisfactory. In this proposed work, an open source surgery simulation framework, SoFMIS, will be utilized and enhanced with tissue interaction models to a ...

    STTR Phase I 2016 Department of DefenseDefense Health Agency
  2. Smart Femtosecond Fiber Laser Wound Healing System

    SBC: POLARONYX INC            Topic: DHP15B002

    Based on our success in developing the world first commercial high energy femtosecond fiber laser system and our leading proprietary technology development in ultrashort pulsed fiber laser material processing, PolarOnyx proposes, for the first time, a compact high energy fiber laser based smart wound healing tool to meet with the requirement of this DHP solicitation. It includes a high energy fs f ...

    STTR Phase I 2016 Department of DefenseDefense Health Agency
  3. Development of powder bed printing (3DP) for rapid and flexible fabrication of energetic material payloads and munitions

    SBC: MAKEL ENGINEERING, INC.            Topic: DTRA16A001

    This program will demonstrate how additive manufacturing technologies can be used with reactive and high energy materials to create rapid and flexible fabrication of payload and munitions. Our primary approach to this problem will be to use powder bed binder printing techniques to print reactive structures. The anticipated feedstock will consist of composite particles containing all reactant spe ...

    STTR Phase I 2016 Department of DefenseDefense Threat Reduction Agency
  4. Rapid Development of Weapon Payloads via Additive Manufacturing

    SBC: MATSYS INCORPORATED            Topic: DTRA16A001

    MATSYS proposes to adapt emerging additive manufacturing techniques (so-called 3-D Printing) for use with reactive structural materials and demonstrate this capability to rapidly fabricate reactive case. Our concept incorporates two major manufacturing steps: 3D printing of green compacts from pure Al or Al-based reactive powder blend; and Microwave (MW) sintering of green compacts into net-shaped ...

    STTR Phase I 2016 Department of DefenseDefense Threat Reduction Agency
  5. Self-fragmenting Structural Reactive Materials (SF-SRM) for High Combustion Efficiency

    SBC: MATSYS INCORPORATED            Topic: DTRA16A002

    MATSYS proposes to develop, test and evaluate a scalable metal-based reactive structural material that will self-fragment to micron or sub-micron scale fuel particles when subjected to explosive shock loading, resulting in significantly enhanced metal combustion efficiency. Use of reactive material casings offers the potential for several-fold increases in blast and overpressure by generating rapi ...

    STTR Phase I 2016 Department of DefenseDefense Threat Reduction Agency
  6. Portable and Automated Radiation Effects Test Structures for Advanced Technology Nodes

    SBC: MICROELECTRONICS RESEARCH DEVELOPMENT CORPORATION            Topic: DTRA16A003

    Micro-RDC will develop portable radiation effects test structures that scales to new process nodes. These structures will enable the investigation of the effects of radiation on the new technology from the material processing level as well as the circuit level. The production of the chosen structures and the development of software to extract the model parameters will form the framework. A suit ...

    STTR Phase I 2016 Department of DefenseDefense Threat Reduction Agency
  7. Modular Pulse Charger and Laser Triggering System for Large-Scale EMP and HPM Applications

    SBC: SCIENTIFIC APPLICATIONS & RESEARCH ASSOCIATES, INC.            Topic: DTRA16A004

    For effective protection against EMP and HPM threats, it is important to understand the physics of the threats, and also to quantify the effects they have on electrical systems. EMP and HPM vulnerability testing requires delivery of high peak power and electric fields to distant targets. The most practical solution to simulate such environments is to develop a modular, optically-isolated MV-antenn ...

    STTR Phase I 2016 Department of DefenseDefense Threat Reduction Agency
  8. Handoff Training for Combat Casualty Care (HTC3) Framework

    SBC: Perceptronics Solutions, Inc.            Topic: DHA17B001

    This proposal is to develop a Handoff Training for Combat Casualty Care (HTC3) Framework.Training is the crux of the handoff problem today. Patient handoffs are a crucial part of casualty care, both in military and civilian environments; and today handoffs are being performed in less than optimal fashion, with ineffective communications accounting for 80% of the handoff errors. Our new HTC3 Framew ...

    STTR Phase I 2018 Department of DefenseDefense Health Agency
  9. Oxygen Production and Delivery on Demand

    SBC: GLOBAL RESEARCH & DEVELOPMENT INC            Topic: DHA17B005

    This proposal is in response to the Defense Health Agency 2017 Phase I SBIR topic 17B-005.The approach is the use of a membrane oxygen pump using newly developed nano-thickness membranes with all the layers less than 1 micron total.Nanometer thickness membranes enable more oxygen output per surface area at temperatures of 300-600 C than current state-of-the -art 600-800 C membranes that are 50-300 ...

    STTR Phase I 2018 Department of DefenseDefense Health Agency
  10. Innovative Mitigation of Radiation Effects in Advanced Technology Nodes

    SBC: MICROELECTRONICS RESEARCH DEVELOPMENT CORPORATION            Topic: DTRA16A003

    Micro-RDC has developed portable radiation effects test structures that scale to new process nodes.These structures will enable the investigation of the effects of radiation on the new technology from the material processing level as well as the circuit level.Fabricating the chosen structures and the refinement of software to extract the model parameters will be completed in this effort.A suite of ...

    STTR Phase II 2018 Department of DefenseDefense Threat Reduction Agency
US Flag An Official Website of the United States Government