You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Coupled Viscous Vortex Particle Method and Unstructured CFD Solver for Rotorcraft Aerodynamic Interaction Modeling

    SBC: ADVANCED ROTORCRAFT TECHNOLOGY, INC.            Topic: N09T009

    The rotorcraft aerodynamic interaction is a complicated problem and remains an extremely challenging aspect of rotorcraft analysis. This STTR is dedicated to developing a solution for the complicated rotorcraft aerodynamic interaction problem. The Phase I research coupled a state-of-the-art vortex particle method (VPM) with an unstructured Navier-Stokes CFD body surface solver and prototyped a hyb ...

    STTR Phase II 2010 Department of DefenseNavy
  2. Integrated Thermal Management and Wafer-Scale Packaging for High-Power VCSELs

    SBC: Aerius Photonics, LLC.            Topic: MDA08T011

    Aerius Photonics is proposing to develop high-power Vertical Cavity Surface Emitting Lasers (VCSELs) and arrays on 4” substrates with an integrated thermal management approach to improve the thermal performance on an entirely wafer-level manufacturing compatible process. This is critical as waste heat and wafer-scale manufacturing approaches are driving factors for performance and costs in a la ...

    STTR Phase II 2010 Department of DefenseMissile Defense Agency
  3. III-V Based Focal Plane Arrays for Video-Rate Terahertz Imaging

    SBC: TRAYCER DIAGNOSTIC SYSTEMS, INC.            Topic: AF08T006

    Owing to a unique set of intellectual property and core expertise, this Phase II team, led by Traycer Diagnostic Systems, will build and characterize a packaged, 16x16 terahertz focal plane array (FPA) for broadband video-rate imaging at frequencies up to 1.3 THz. Traycer’s competitive advantage is based on its record-performing detectors, novel antennas, and array architectures that permit a d ...

    STTR Phase II 2010 Department of DefenseAir Force
  4. Planar, High Frequency, Power Conversion Device Technology

    SBC: TRANSPHORM, INC.            Topic: N09T023

    Transphorm proposes to demonstrate a normally off fast high voltage Gallium Nitride power switch solution. The switch would block to 1200V, have a threshold voltage greater than 5 V, and the phase 2 switch will target an on resistance less than 15 ohm-mm and current more than 1 Amp. To accomplish these targets, Transphorm will combine the design requirements of realizing a high (and positive) thre ...

    STTR Phase II 2010 Department of DefenseNavy
  5. Functionalized Single Walled Carbon Nanotubes for High Performance Composites

    SBC: Carbon Solutions Inc            Topic: N06T031

    New material systems are required as a result of advanced performance criteria for the next generation destroyer program and other Navy ships. As a part of these requirements there is high demand for high strength structural composites. The objective of the STTR Phase II project is to develop high strength and light weight structural composites utilizing functionalized single-walled carbon nanotub ...

    STTR Phase II 2010 Department of DefenseNavy
  6. Unified Kinetic/Continuum Flow Solver with Adaptive Cartesian Mesh for Hypersonic Flows in the Earth Atmosphere

    SBC: CFD RESEARCH CORPORATION            Topic: AF08T019

    The design of future hypersonic vehicles requires detailed understanding of flow regimes ranging from rarefied to continuum. Hypervelocity flows are characterized by high temperatures, real gas effects, nonequilibrium chemistry, and ionization. The goal of this project is to develop unified kinetic/continuum solution methods with automatic domain decomposition for a wide range of Air Force applic ...

    STTR Phase II 2010 Department of DefenseAir Force
  7. Scalable technology for growth of high quality single crystal gallium nitride

    SBC: Soraa            Topic: AF08BT20

    We propose to demonstrate and advance several key aspects of our novel, scalable ammonothermal technology for growth of high quality single crystal gallium nitride. Specifically, we propose to demonstrate a high growth rate and high crystalline quality, to design and analyze a pilot-scale reactor, and to construct and validate a quantitative model to describe the fluid dynamics of the growth envi ...

    STTR Phase II 2010 Department of DefenseAir Force
  8. Broadband agile wavelength laser for chemical aerosol detection

    SBC: DBC Technology Corp.            Topic: ARMY09T020

    The Phase I effort was successful in experimentally showing feasibility of a combined isotope transmitter that can be developed and demonstrated under the Phase II program. The initial experimental results give the window of gas mixtures for a stable discharge. Laser extraction tests were accomplished with C12/C13 mixtures to give guidance for further work to increase laser gain. For application ...

    STTR Phase II 2010 Department of DefenseArmy
  9. Advanced Point Sensor

    SBC: DBC Technology Corp.            Topic: ARMY08T024

    Results of the Phase I work showed that an advanced, compact Point Sensor can be built with good sensitivity for detection of both biological agents and chemical aerosol and vapor agents. This will be the first point sensor capable of this dual role. The

    STTR Phase II 2010 Department of DefenseArmy
  10. Novel Methods for Rapid Detection of Infection Agents and the Severity of Cellular Damage

    SBC: DiaCarta, Inc.            Topic: ST081003

    Early detection of virulent infectious pathogens is critical to blocking the devastating epidemic spread of the pathogen and the potential harm this could have on our armed forces and general populations. In Phase I, we have utilized the state-of-the-art QuantiGene 2.0 technology to establish an assay for the sensitive quantification of SARS (epidemic spread in 2001) and assessing plasma DNA level ...

    STTR Phase II 2010 Department of DefenseDefense Advanced Research Projects Agency
US Flag An Official Website of the United States Government