You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Improved Sensing Using Simultaneous Orthogonal Spectroscopic Detection

    SBC: Applied Systems Research, Inc.            Topic: A09AT019

    US forces are increasingly involved in asymmetric warfare, peacekeeping and humanitarian assistance missions. These scenarios can place soldiers in direct contact with harmful biological and chemical warfare organisms and agents, toxic industrial chemicals, and explosives. Current portable sensor technology solutions rely on visible and near-IR Raman or Fluorescence spectroscopy. But operations ...

    STTR Phase I 2010 Department of DefenseArmy
  2. Impact of Climate Change on Military Compounds in the Environment

    SBC: Environmental Quality Management            Topic: A09AT024

    This will facilitate the development of remedial approaches for existing facilities and assist in planning new facilities, logistics, and procedures to protect the environment without impairing critical mission functionality. The commercial application will include software distribution and updates.

    STTR Phase I 2010 Department of DefenseArmy
  3. Non-destructive Exfoliation and Drying of Anisotropic Nanomaterials

    SBC: NANOSONIC INC.            Topic: A09AT021

    The overall goal of this proposed Army STTR is to demonstrate low-cost, non-destructive methodologies for non-agglomerating drying of anisotropic nanomaterials. NanoSonic and Virginia Tech will work in tandem to demonstrate novel approaches involving both high performance coatings and CO2 processing that facilitate gentle, simultaneous drying and exfoliation of nanoparticles, preventing agglomera ...

    STTR Phase I 2010 Department of DefenseArmy
  4. Incremental Learning for Robot Sensing and Control

    SBC: SET ASSOC. CORP.            Topic: A09AT030

    SET Corporation, together with Carnegie Mellon University''s National Robotics Engineering Center (NREC), will develop a system that leverages state-of-the-art sensing, perception, and machine learning to provide trafficability assessments for UGVs for agricultural, security and military applications. It will consist of a set of proprioceptive and exteroceptive sensors that provide rich data about ...

    STTR Phase I 2010 Department of DefenseArmy
  5. Narrowband microbolometer arrays for infrared chemical sensing

    SBC: ITN ENERGY SYSTEMS, INC.            Topic: A10AT023

    This Small Business Technology Transfer Research program will develop narrow band plasmonic resonant cavity filters with integrated microbolometer sensors operating in the long wave infrared (LWIR) atmospheric transmission band for IR absorption measurements of low concentration chemicals. IR spectroscopy can identify a wide range of contaminants, including chemical/biological warfare agents, exp ...

    STTR Phase I 2010 Department of DefenseArmy
  6. Plasmonic MEMS Sensor Array

    SBC: Five Stones Research Corporation            Topic: A10AT002

    Sensor development researchers and engineers have perpetually sought novel methods to reduce sensor size and improve performance. Continued miniaturization of sensors through micromachining has enabled novel applications and introduced new paradigms for engineered systems to interact with the world. The challenge has always been to improve performance while continually reducing size. In the cur ...

    STTR Phase I 2010 Department of DefenseArmy
  7. MEMS based thermopile infrared detector array for chemical and biological sensing

    SBC: BFE Acquisition Sub II, LLC            Topic: A10AT004

    Thermopile arrays manufactured using integrated process compatible materials and micro-machining will provide high performance with low manufacturing cost. Black Forest Engineering (BFE) teamed with Case Western Reserve University will design thermopiles using silicon based semiconductors and compare performance. Low cost thermopiles, differentially coupled with advanced BFE CMOS readout, will pr ...

    STTR Phase I 2010 Department of DefenseArmy
  8. An Automated, High Throughput, Filter-Free Pathogen Preconcentrator

    SBC: CFD RESEARCH CORPORATION            Topic: A10AT016

    Accurate real-time waterborne pathogen detection is of paramount importance to security of U.S. military forces and installations. Fieldable high-throughput pathogen concentration is a critical analytical need for enhanced detection performance. Existing concentration methods are time-consuming, bulky, labor-intensive, power- and reagent-hungry, and consequently ill-suited for battlefield deployme ...

    STTR Phase I 2010 Department of DefenseArmy
  9. Topological Data Analysis and Wide Area Detection of Chemical and Biological Contamination MP 39-10

    SBC: METRON INCORPORATED            Topic: A10AT020

    Metron, Inc. and Stanford University propose to design, develop, test and demonstrate topological data analytic algorithms to analyze hyperspectral imagery. We propose to adapt the topological data analytic techniques, including Stanford’s successful Mapper algorithm, to the hyperspectral imagery domain. Using these algorithms we will identify topological and geometric features and properties ...

    STTR Phase I 2010 Department of DefenseArmy
  10. Passive Infrared Detection of Aerosolized Bacterial Spores

    SBC: DECIBEL RESEARCH, INC.            Topic: A10AT019

    deciBel Research and our university partner, Rochester Institute of Technology (RIT)-Center for Imaging Science, propose to develop a dual MWIR/LWIR imaging polarimeter for the detection and discrimination of aerosolized biological spores. The system will exploit spectral absorption and MIE scattering-induced radiometric and polarimetric phenomenon exhibited by clouds of aerosolized biological spo ...

    STTR Phase I 2010 Department of DefenseArmy
US Flag An Official Website of the United States Government