You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Advanced Membranes for CO2 Capture from Existing Coal-fired Power Plants

    SBC: NEXTECH MATERIALS, LTD.            Topic: 24a

    Coal is an abundant source of energy in the USA, but is not currently utilized effectively. Recently, the DOE has begun a carbon sequestration program is to develop advanced CO2 capture and compression technology for existing coal-fired plants with increased efficiency with no more than a 35% increase in the cost of electricity. This will require new approaches and technologies to be successful. N ...

    STTR Phase I 2010 Department of Energy
  2. A Mesh Free Framework for Mechanical Simulations of Microstructure Data Files

    SBC: CFD RESEARCH CORPORATION            Topic: 07a

    The Exascale Computing Project is tasked to develop the next generation of high performance computing systems capable of computing at 50 to 100 times faster than current HPC systems. Computing at this extreme-scale will significantly enhance the value of materials modeling and simulation to basic materials research and engineering In particular, computing at the extreme scale will enable a higher ...

    STTR Phase I 2019 Department of Energy
  3. Amplifiers for High Repetition Rate Diode-Pumped Ultra-Intense Femtosecond Lasers

    SBC: XUV LASERS, INC.            Topic: 25c

    The problem being addressed is the development of high intensity ultrashort pulse lasers, in recognition that today’s ultra-high intensity lasers are limited to repetition rates of < 10 Hz. Technical solutions are sought to enable the generation of high energy (joule-level) laser pulses that can be focused to highly relativistic intensity at high repetition rates (100-1000 Hz). The proposed proj ...

    STTR Phase I 2019 Department of Energy
  4. A Multi-physics Analysis Capability for Engine Materials

    SBC: Sunergolab Inc.            Topic: 03b

    Computer-aided Engineering software that apply the Finite Element Method to perform a multi-physics analysis have received widespread acceptance for traditional macro-scale material systems. Challenges persist in the modeling of complex coupled processes in environmental/thermal barrier coatings (E/TBCs) used to protect substrate material against the corrosive environment in the hot section parts ...

    STTR Phase I 2019 Department of Energy
  5. Bio-inspired Macromolecules Containing Atomically Precise Catalytic Active Sites

    SBC: MAINSTREAM ENGINEERING CORP            Topic: 09

    High selectivity in chemical reactions is the key to reducing costs, energy consumption and emissions in chemical processing. More selective and active catalysts will reduce the need for recovering unreacted chemicals for recycle and removing byproducts. Reducing the burden on separation processes will greatly reduce the energy required for chemical production. We propose to design macromolecular ...

    STTR Phase I 2016 Department of Energy
  6. Carbon and energy capture from biogas for the production of biochemicals

    SBC: SASYA INC            Topic: 11b

    In order to curb America’s dependence on petroleum and increase reliance on domestic, alternative sources of energy, there is a strong emphasis on using biogas. There is still a significant potential in developing biogas as a resource not only for energy, but also for chemicals. In this proposal, Sasya will demonstrate how biogas could be used to produce energy and chemicals. We propose a simple ...

    STTR Phase I 2016 Department of Energy
  7. Cavity Enhanced Thomson Scattering System for Low Temperature Plasmas

    SBC: Seaforth LLC            Topic: 30a

    Electrons play a very key role in plasma chemistry and dynamics of low temperature plasmas. Improved capability for measuring electron number density, ne, and electron energy distribution function, EEDF, in weakly ionized low temperature plasmas would benefit both fundamental study and application areas. For example, the capability would directly benefit emerging research targeted at modifying and ...

    STTR Phase I 2013 Department of Energy
  8. Cervical Spine Health Improvement Products

    SBC: SWITCHBOX INC            Topic: DHA18B001

    Most standard-of-care tools and techniques for evaluating neck disorders are subjective, unreliable, and do not provide actionable information for providers, payers, and organizations to deliver efficient and effective care. This lack of objective neck he

    STTR Phase I 2019 Department of DefenseDefense Health Agency
  9. Compositionally Gradient Garnet/PVDF-HFP Hybrid Membranes for Li-Metal Batteries

    SBC: HAZEN RESEARCH, INC.            Topic: 19a

    Development of Li-ion conducting membranes capable of supporting Li-metal anode to enable high- performance Li-metal batteries (LiMB) is a priority for the Department of Energy (DOE). State-of- the-art membranes used for Li-ion batteries (LiB) are not suitable for LiMB and have a number of disadvantages including poor cycling performance, low Li-ion conductivity, and electrochemical stability with ...

    STTR Phase I 2019 Department of Energy
  10. Defect Free, Ultra-Rapid Thinning/Polishing of Diamond Crystal Radiator Targets (20??m) for Highly Linearly Polarized Photon Beams

    SBC: Sinmat Inc            Topic: 46e

    The fabrication of high-quality ultra thin (~20 micron) diamond crystals targets for 9 GeV highly polarized photon beams is an outstanding challenge. Current state of the art polishing/thinning techniques are not successful in thinning single crystal diamond to such dimension because of its extreme hardness and chemical inertness. These techniques create significant stresses surface and sub-surfac ...

    STTR Phase I 2010 Department of Energy
US Flag An Official Website of the United States Government