You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. MAVERICK: Mixed-Automation Visualizer for Emerging Relationships & Insights in Complex Knowledge

    SBC: APTIMA INC            Topic: MDA18T001

    System-level simulations of the Ballistic Missile Defense System (BMDS) generate extremely large quantities of highly multidimensional data, which analysts at the Missile Defense Agency (MDA) must explore and analyze to infer insights and relationships. Existing tools based on automated routine scripts are ill-equipped to handle the volume and complexity of these data, requiring piecemeal analysis ...

    STTR Phase I 2019 Department of DefenseMissile Defense Agency
  2. Optimized Higher Power Microwave Sources

    SBC: METAMAGNETICS INC            Topic: N19AT001

    HPM (high power microwave) weapons could disable vehicles, enable vehicle recovery, and reduce collateral damage. Metamagnetics, in partnership with Professor Jane Lehr (University of New Mexico), and General Atomics propose a completely solid-state HPM system based on their work in Gyromagnetic Nonlinear Transmission Lines (gNLTL) and compact High-Gain Slotted Waveguide Antennas. The system will ...

    STTR Phase I 2019 Department of DefenseNavy
  3. Large Eddy Simulation (LES) Flow Solver Suitable for Modeling Conjugate Heat Transfer

    SBC: Kord Technologies, Inc.            Topic: N19BT027

    Accurate prediction heat transfer in gas turbine components subject to cooling requires high fidelity modeling of heat transfer in the presence of high Reynolds number turbulent flow. The cooling internal to the blades results in sustained temperature gradients within the structural parts, from low temperature in the interior of the structure to increasingly higher temperature closer to the surfac ...

    STTR Phase I 2019 Department of DefenseNavy
  4. POC Blood Coagulopathy Monitor

    SBC: CFD RESEARCH CORPORATION            Topic: DHA19A001

    Traumatic injuries account for 30% of all life years lost in the US and is the leading cause of death for people under 46 years of age. Uncontrolled bleeding or hemorrhage constitute 30-40% of trauma related deaths and are considered to be a major cause o

    STTR Phase I 2019 Department of DefenseDefense Health Agency
  5. Joint User-centered Planning artificial Intelligence Tools for Effective mission Reasoning (JUPITER)

    SBC: CHARLES RIVER ANALYTICS, INC.            Topic: N19BT029

    Effective mission planning is critical for military strategy and execution. This process is complex as human operators must consider many variables (e.g., resource limitations, threats, risks) when formulating a plan to accomplish mission goals. Although powerful tools, such as the Navy’s Joint Mission Planning System (JMPS), provide advanced functionality, mission planning remains a hybrid acti ...

    STTR Phase I 2019 Department of DefenseNavy
  6. AI-Driven, Secure Navy Mission Planning via Deep Reinforcement Learning and Attribute-Based Multi-Level Security

    SBC: EH GROUP INC            Topic: N19BT029

    Current mission planning systems allow strike planners and operations centers to perform time-sensitive strike planning, execution monitoring, and validate mission effects using XML-based tools that visualize time critical attack plan and track plan status vs. execution. In this proposed STTR Phase I design for the Next Generation Navy Mission Planning (NGNMPS) system, we will identify expanded op ...

    STTR Phase I 2019 Department of DefenseNavy
  7. REVAMP: REcommendation, Verification, and Analysis for Mission Planning

    SBC: Intelligent Automation, Inc.            Topic: N19BT029

    Effective and efficient data-driven mission support is crucial for achieving readiness and superiority in warfighting enterprises. Leveraging machine learning (ML) and artificial intelligence (AI) in mission planning would not only minimize the human-error factors and increase accuracy, but also improve speed in planning, execution, and evaluation of a mission. REVAMP will improve the next generat ...

    STTR Phase I 2019 Department of DefenseNavy
  8. A Hierarchical and Extendable, Component-Based Simulation Tool for Aircraft Thermal Management Systems

    SBC: CFD RESEARCH CORPORATION            Topic: N19BT025

    The requirements for thermal management on tactical aircraft systems have reached a level at which integrated system design must be considered early in the aircraft design process. An integrated propulsion, power and thermal modeling and simulation design approach is necessary for reduced size, weight and power requirements. At the same time, there is an urgent need for capabilities that enable an ...

    STTR Phase I 2019 Department of DefenseNavy
  9. Robust, Low Permeability, Water-Filled Microcapsules

    SBC: TRITON SYSTEMS, INC.            Topic: N19BT030

    Triton Systems proposes to develop a process to synthesize water filled microcapsules that are able to contain the water in the microcapsules for extended (years) periods of time. We will develop accelerated aging tests to measure the water loss over the equivalent of 20 years of more. We will also measure the mechanical strength of the microcapsules before and during exposure to jet fuel, and whe ...

    STTR Phase I 2019 Department of DefenseNavy
  10. Carbon Nanotube-Based Heater Coatings for Processing of Thermosetting and Thermoplastic Composites

    SBC: MAINSTREAM ENGINEERING CORP            Topic: N18BT031

    For this research program, Mainstream will collaborate with Colorado State University (CSU) to develop a nanostructured heater capable of curing aerospace grade composites out-of-autoclave (OOA). The use of autoclaves is the primary cost driver in composite manufacturing due to size limitations, long processing times, and inefficient energy usage. Therefore, the Navy is looking to develop a nanost ...

    STTR Phase I 2019 Department of DefenseNavy
US Flag An Official Website of the United States Government