You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY21 is not expected to be complete until September, 2022.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. AeroQUEST II: Aeromedical Quantified Understanding via Experimental Standards Toolkit

    SBC: Aptima, Inc.            Topic: DHA17C001

    Adverse physiological events (PEs) have plagued warfighters piloting military aircraft, particularly incidents involving hypoxia and cockpit cabin decompression. Although a variety of research has been performed to try to understand the problems and root

    STTR Phase II 2019 Department of DefenseDefense Health Agency
  2. Wavelength-Agile Real Time Tabletop X-ray Nanoscope based on High Harmonic Beams

    SBC: Kapteyn-Murnane Laboratories, Inc.            Topic: ST15C001

    Nanoscale, material sensitive, imaging techniques are critical for progress in many disciplines as we learn to master science and technology at the smallest dimensions — on the nanometer to atomic-scale. However, progress in both science and technology is becoming increasingly limited by the constraints of current imaging techniques and metrologies. Fortunately, by combining coherent extreme UV ...

    STTR Phase II 2019 Department of DefenseDefense Advanced Research Projects Agency
  3. Adaptive Markov Inference Game Optimization (AMIGO) for Rapid Discovery of Evasive Satellite Behaviors

    SBC: INTELLIGENT FUSION TECHNOLOGY, INC.            Topic: AF17CT02

    Space superiority requires space protection and space situational awareness (SSA), which rely on rapid and accurate space object behavioral and operational intent discovery. The presence of adversaries in addition to real-time and hidden information constraints greatly complicates the decision-making process in controlling both ground-based and space-based Air Force surveillance assets. The focus ...

    STTR Phase II 2019 Department of DefenseAir Force
  4. Brain-Based Prediction of Influence Message Effectiveness (BB-PRIME)

    SBC: Charles River Analytics, Inc.            Topic: A12AT009

    Behavior change is a common objective across the Defense community. Recent studies suggest that neuroimaging can improve our ability to predict what messages are effective in changing behavior in individuals and at scale (Falk & Scholz, 2018). However, current neuroscience results have not established definitive causal relationships between specific types of messages and behavior change. In BB-PRI ...

    STTR Phase II 2019 Department of DefenseDefense Advanced Research Projects Agency
  5. Rapid Discovery of Evasive Satellite Behaviors

    SBC: Data Fusion & Neural Networks, LLC            Topic: AF17CT02

    The problem addressed in this effort is to automatically learn historical ephemeris space catalog time, position, and velocity entity track update error uncertainties (i.e., without track error covariances) and to automatically (e.g., without expert event labeling) produce: – unmodeled non-gravitational space catalog update flags – abnormal unmodeled catalog update flags with abnorma ...

    STTR Phase II 2019 Department of DefenseAir Force
  6. Orientation-Patterned Semiconductor Crystals with Low Insertion Loss and High Resistance to Laser Damage

    SBC: Physical Sciences Inc.            Topic: AF18AT016

    The Air Force needs tunable laser systems with high average power in the mid-infrared region of the spectrum for military applications including defense against heat-seeking missiles. Currently-fielded laser systems, based on nonlinear frequency conversion in periodically poled lithium niobate (PPLN), have limited optical power at wavelengths between 4 m and 5 m because of intrinsi ...

    STTR Phase II 2019 Department of DefenseAir Force
  7. Volume Digital Holographic Wavefront Sensor Phase 2

    SBC: NUTRONICS, INC.            Topic: AF18AT006

    Through the execution of our Phase 1 effort, Nutronics, Inc. and Montana State University developed an improved means to optimize the Pellizzarri cost functional for coherent imaging using digital holography. Our algorithm developed during the Phase 1 effort accelerates convergence times by a factor of 20-40 for the majority of scenarios evaluated. Our proposed Phase 2 effort has a two-fold focus: ...

    STTR Phase II 2019 Department of DefenseAir Force
  8. Full Mueller Matrix Characterization of Imaged Samples using Digital Holography

    SBC: Polaris Sensor Technologies, Inc.            Topic: AF18AT007

    The Phase II effort will be to clearly demonstrate the feasibility and build a prototype of a noncontact, high-quality holographic polarimetry system with pixel level depth and Mueller matrix information with a user-friendly interface to image and display this data. The measurements of each data product will be validated with trusted truth samples. The system will be reproducible and will have a d ...

    STTR Phase II 2019 Department of DefenseAir Force
  9. Radio Frequency (RF) Filter Tuning Element

    SBC: MAXENTRIC TECHNOLOGIES, LLC            Topic: AF18AT015

    To meet the requirements of the AF18A-T015 solicitation, MaXentric and University of California San Diego are proposing the development of a low loss, high linearity capacitor. The tunable capacitor target is a compact integrated design, capable of a tuning range up to 4:1, with a minimum Q of 80 at 4 GHz, and handling up to 20W CW. During phase I, UCSD studied a novel varactor structure to improv ...

    STTR Phase II 2019 Department of DefenseAir Force
  10. Mine Target Reacquisition for Next Generation Mine Neutralization Systems (Sonar SLAM)

    SBC: Physical Sciences Inc.            Topic: MDA12T001

    The US Navy is moving towards a Single Sortie Detect to Engage (SSDTE) paradigm to implement in-stride minehunting and mine prosecution. Integrating in-stride Mine Search and Mine Prosecution functions is a key requirement to achieve the SSDTE paradigm. Mine Target Reacquisition between the mine search operations and mine prosecution phases poses a particular challenge, as planned mine prosecution ...

    STTR Phase II 2019 Department of DefenseNavy
US Flag An Official Website of the United States Government