You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Adaptive Markov Inference Game Optimization (AMIGO) for Rapid Discovery of Evasive Satellite Behaviors

    SBC: INTELLIGENT FUSION TECHNOLOGY, INC.            Topic: AF17CT02

    Space superiority requires space protection and space situational awareness (SSA), which rely on rapid and accurate space object behavioral and operational intent discovery. The presence of adversaries in addition to real-time and hidden information constraints greatly complicates the decision-making process in controlling both ground-based and space-based Air Force surveillance assets. The focus ...

    STTR Phase II 2019 Department of DefenseAir Force
  2. Rapid Discovery of Evasive Satellite Behaviors

    SBC: DATA FUSION & NEURAL NETWORKS, LLC            Topic: AF17CT02

    The problem addressed in this effort is to automatically learn historical ephemeris space catalog time, position, and velocity entity track update error uncertainties (i.e., without track error covariances) and to automatically (e.g., without expert event labeling) produce: – unmodeled non-gravitational space catalog update flags – abnormal unmodeled catalog update flags with abnorma ...

    STTR Phase II 2019 Department of DefenseAir Force
  3. Orientation-Patterned Semiconductor Crystals with Low Insertion Loss and High Resistance to Laser Damage

    SBC: PHYSICAL SCIENCES INC.            Topic: AF18AT016

    The Air Force needs tunable laser systems with high average power in the mid-infrared region of the spectrum for military applications including defense against heat-seeking missiles. Currently-fielded laser systems, based on nonlinear frequency conversion in periodically poled lithium niobate (PPLN), have limited optical power at wavelengths between 4 m and 5 m because of intrinsi ...

    STTR Phase II 2019 Department of DefenseAir Force
  4. Volume Digital Holographic Wavefront Sensor Phase 2

    SBC: NUTRONICS, INC.            Topic: AF18AT006

    Through the execution of our Phase 1 effort, Nutronics, Inc. and Montana State University developed an improved means to optimize the Pellizzarri cost functional for coherent imaging using digital holography. Our algorithm developed during the Phase 1 effort accelerates convergence times by a factor of 20-40 for the majority of scenarios evaluated. Our proposed Phase 2 effort has a two-fold focus: ...

    STTR Phase II 2019 Department of DefenseAir Force
  5. Full Mueller Matrix Characterization of Imaged Samples using Digital Holography

    SBC: POLARIS SENSOR TECHNOLOGIES INC            Topic: AF18AT007

    The Phase II effort will be to clearly demonstrate the feasibility and build a prototype of a noncontact, high-quality holographic polarimetry system with pixel level depth and Mueller matrix information with a user-friendly interface to image and display this data. The measurements of each data product will be validated with trusted truth samples. The system will be reproducible and will have a d ...

    STTR Phase II 2019 Department of DefenseAir Force
  6. Radio Frequency (RF) Filter Tuning Element

    SBC: MAXENTRIC TECHNOLOGIES LLC            Topic: AF18AT015

    To meet the requirements of the AF18A-T015 solicitation, MaXentric and University of California San Diego are proposing the development of a low loss, high linearity capacitor. The tunable capacitor target is a compact integrated design, capable of a tuning range up to 4:1, with a minimum Q of 80 at 4 GHz, and handling up to 20W CW. During phase I, UCSD studied a novel varactor structure to improv ...

    STTR Phase II 2019 Department of DefenseAir Force
  7. Fidelity Enhancement of Nuclear Power Plant Simulators Utilizing High Fidelity Simulation Predictions

    SBC: WESTERN SERVICES CORPORATION            Topic: 30c

    Accurate simulation of nuclear power plant behavior is necessary for both engineering and training applications. An engineering grade simulator, used for design, safety analysis and operations, is characterized by high fidelity, computational power, lack of real-time capability, and user non-interactive environment. By contrast, a training grade simulator, used for operator training and education, ...

    STTR Phase II 2019 Department of Energy
  8. High Power Ceramic Disk Lasers with Gradient Doping made by Direct Ink Writing

    SBC: RADIATION MONITORING DEVICES, INC.            Topic: 25c

    The power output of the high power lasers used in physics research is limited by the materials available for making gain media. Future increases in power require new and better materials. Operation at high power creates great thermal stresses that can lead to birefringence, thermal lensing or physical damage to the host. Effective cooling and small temperature gradients are critical for achieving ...

    STTR Phase II 2019 Department of Energy
  9. No Power Bionic Lower Extremity Prostheses

    SBC: LIBERATING TECHNOLOGIES INC            Topic: DHP16C007

    Current prosthetic feet produce much less peak mechanical power than the able-bodied foot/ankle and release only about half of the mechanical energy generated during gait. This leads to higher energy expenditure among amputees as compared to able-bodied i

    STTR Phase II 2019 Department of DefenseDefense Health Agency
  10. High Temperature Materials for Hypersonic Radomes and Antennas

    SBC: AMERICAN TECHNICAL COATINGS, INC.            Topic: AF18AT013

    Successful completion of this Phase II proposal will fully characterize and evaluate a material for use in RF windows on hypersonic flight vehicles. Phase II will specifically examine the materials suitability through RF testing in X, Ku, and Ka bands and at elevated temperatures to 2000°F. The desired outcome will be a material with predictable, repeatable dielectric properties over frequency ...

    STTR Phase II 2019 Department of DefenseAir Force
US Flag An Official Website of the United States Government