You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY20 is not expected to be complete until September, 2021.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Bio-mathematical Models of Aggregated Tissues & Organ Properties

    SBC: Corvid Innovation LLC            Topic: DHP16A001

    Realistic surgical simulation requires a combination of representative tissue geometry, accurate tissue material properties and lifelike tool-tissue interaction forces. Recent advances in computational power and imaging modalities have provided the capability to represent the anatomical details required for surgical training; however, the mathematical models which govern the underlying tissue pro ...

    STTR Phase I 2016 Department of DefenseDefense Health Agency
  2. Infectious Disease Diagnostics and Differentiation of Viral vs. Bacterial Infections for Point of Care Applications

    SBC: GENECAPTURE            Topic: CBD15C001

    The modern warfighter faces the constant threat of endemic infections, multi-drug resistant bacteria and Biological Warfare Agents. In order to provide accurate front-line treatment that will curtail the overuse of antibiotics, a rapid and robust molecula

    STTR Phase I 2016 Department of DefenseOffice for Chemical and Biological Defense
  3. High Fidelity Computational Models for Aggregated Tissue Interaction in Surgical Simulations

    SBC: CFD Research Corporation            Topic: DHP16A001

    Surgical simulations aiming to support surgeon practices and medical education have attracted enormous research effort over the last two decades. However, the physical reality, especially on simulating aggregated tissue interaction, is still unsatisfactory. In this proposed work, an open source surgery simulation framework, SoFMIS, will be utilized and enhanced with tissue interaction models to a ...

    STTR Phase I 2016 Department of DefenseDefense Health Agency
  4. Bio-Mathematical Models of Aggregated Tissues & Organ Properties

    SBC: BioMojo, LLC            Topic: DHP16A001

    BioMojo LLC and the Departments of Mathematics and Biomedical Engineering at the University of North Carolina Chapel Hill, will develop a preliminary bio mathematical model framework to represent how human tissues interact and behave at their boundaries. Tissue interaction properties (e.g. tensile, shear, friction, and so forth) of connective, epithelial, muscular, and nervous tissue including su ...

    STTR Phase I 2016 Department of DefenseDefense Health Agency
  5. Oxygen Production and Delivery on Demand

    SBC: Global Research and Development Inc.            Topic: DHA17B005

    This proposal is in response to the Defense Health Agency 2017 Phase I SBIR topic 17B-005.The approach is the use of a membrane oxygen pump using newly developed nano-thickness membranes with all the layers less than 1 micron total.Nanometer thickness membranes enable more oxygen output per surface area at temperatures of 300-600 C than current state-of-the -art 600-800 C membranes that are 50-300 ...

    STTR Phase I 2018 Department of DefenseDefense Health Agency
  6. Inhibiting Prolyl Hydroxylase to Mimic Natural Acclimatization to High Altitude to Improve Warfighter Performance at High Altitude

    SBC: Research Logistics Company            Topic: SOCOM17C001

    Acclimatization is the long-term adjustment that humans experience when exposed for weeks or months to high altitude. Acclimatization is important in this context because a warfighter who is acclimatized to high altitude is immune to high altitude illness, has superior work capacity, and has cognitive function approaching that found at sea level. In other words, the acclimatized warfighter is opti ...

    STTR Phase I 2018 Department of DefenseSpecial Operations Command
  7. Characterization of Piezoelectric Fibers for Sensing Shock Waves from Underwater Explosions

    SBC: ADVANCED MATERIALS AND DEVICES            Topic: DHA17C002

    This Small Business Technology Transfer (STTR) Phase I effort will demonstrate the feasibility of using piezoelectric fibers to detect shock waves from underwater explosions (UNDEX) and sensing physiological measures such as heart and respiratory rates on warfighters. Piezoelectric fibers will be characterized for their ability so sense different amplitudes and frequencies of shock and vibration. ...

    STTR Phase I 2018 Department of DefenseDefense Health Agency
  8. System for Nighttime and Low-Light Face Recognition

    SBC: Polaris Sensor Technologies, Inc.            Topic: SOCOM18A001

    The objective of this proposal is to develop instrumentation and algorithms for acquiring facial features for facial recognition in low- and no-light conditions.We will use cross-spectrum matching by exploiting infrared polarimetric imagery which tends to show features that match more closely visible imagery than conventional infrared.In addition to thermal infrared, we will also test subjects in ...

    STTR Phase I 2018 Department of DefenseSpecial Operations Command
  9. Novel Circulating RNA-based Markers as Diagnostic Biomarkers of Infectious Diseases

    SBC: CFD Research Corporation            Topic: CBD18A001

    In resource limited settings, rapid and accurate diagnosis of infections is critical for managing potential exposures to highly virulent pathogens,whether occurring from an act of bioterrorism or a natural event. This is especially important for hard to detect intracellular bacterial andalphavirus infections, that overlap symptomatically and often treated empirically due to a lack of reliable and ...

    STTR Phase I 2018 Department of DefenseOffice for Chemical and Biological Defense
  10. Cervical Spine Health Improvement Products

    SBC: Switchbox, Inc.            Topic: DHA18B001

    Most standard-of-care tools and techniques for evaluating neck disorders are subjective, unreliable, and do not provide actionable information for providers, payers, and organizations to deliver efficient and effective care. This lack of objective neck he

    STTR Phase I 2019 Department of DefenseDefense Health Agency
US Flag An Official Website of the United States Government