You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY21 is not expected to be complete until September, 2022.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Additive Manufacturing of Metallic Materials for High Strain Rate Applications

    SBC: MRL MATERIALS RESOURCES LLC            Topic: MDA17T001

    Metallic additive manufacturing (AM) is an attractive technology for the production of lethality test articles due to the potential for significantly reduced lead time and manufacturing cost.However, in order to be effective in providing accurate lethality data, the properties of the AM material have to match closely the properties of conventionally manufactured alloys found in real threat targets ...

    STTR Phase I 2018 Department of DefenseMissile Defense Agency
  2. An Ultra-High Temperature Ceramic with Improved Fracture Toughness and Oxidation Resistance

    SBC: Plasma Processes, LLC            Topic: MDA09T002

    Hypersonic missile defense systems are being designed to reach global threats. During flight, external surfaces are predicted to reach temperatures in excess of 2200C. As a result, innovative, high performance thermal protection systems (TPS) are of great demand. Among ultra-high temperature ceramics (UHTC), it is well known that ZrB2- and HfB2-based materials have high melting temperatures and ...

    STTR Phase I 2010 Department of DefenseMissile Defense Agency
  3. Bio-mathematical Models of Aggregated Tissues & Organ Properties

    SBC: Corvid Innovation LLC            Topic: DHP16A001

    Realistic surgical simulation requires a combination of representative tissue geometry, accurate tissue material properties and lifelike tool-tissue interaction forces. Recent advances in computational power and imaging modalities have provided the capability to represent the anatomical details required for surgical training; however, the mathematical models which govern the underlying tissue pro ...

    STTR Phase I 2016 Department of DefenseDefense Health Agency
  4. Bio-Mathematical Models of Aggregated Tissues & Organ Properties

    SBC: BioMojo, LLC            Topic: DHP16A001

    BioMojo LLC and the Departments of Mathematics and Biomedical Engineering at the University of North Carolina Chapel Hill, will develop a preliminary bio mathematical model framework to represent how human tissues interact and behave at their boundaries. Tissue interaction properties (e.g. tensile, shear, friction, and so forth) of connective, epithelial, muscular, and nervous tissue including su ...

    STTR Phase I 2016 Department of DefenseDefense Health Agency
  5. Carbon nanotube coatings on electrochemical textured surfaces for advanced adsorptive baffles

    SBC: Faraday Technology, Inc.            Topic: MDA18T003

    This proposed STTR program addresses the challenge of developing advanced absorptive baffles to minimize stray and reflected light across the visible and infrared wavebands for exo-atmospheric optical sensors and seeker telescopes. To achieve this goal Faraday Technology and Pacific Northwest National Laboratory will develop electrochemically textured pyramidal surfaces with CNT black coatings as ...

    STTR Phase I 2019 Department of DefenseMissile Defense Agency
  6. Cervical Spine Health Improvement Products

    SBC: Switchbox, Inc.            Topic: DHA18B001

    Most standard-of-care tools and techniques for evaluating neck disorders are subjective, unreliable, and do not provide actionable information for providers, payers, and organizations to deliver efficient and effective care. This lack of objective neck he

    STTR Phase I 2019 Department of DefenseDefense Health Agency
  7. Contamination-free, Ultra-rapid Reactive Chemical Mechanical Polishing (RCMP) of GaN substrates

    SBC: Sinmat Inc            Topic: MDA09T001

    Gallium Nitride (GaN) substrates are ideal materials for fabrication of high-power and high-frequency devices based on III-V materials. The current state-of-the-art Chemical Mechanical Polishing (CMP) methods are plagued by several challenges, including, surface charge affects due to surface contamination, and sub-surface damages, which can limit the quality of III-V devices. Furthermore, there is ...

    STTR Phase I 2010 Department of DefenseMissile Defense Agency
  8. Development for Radiation Hardened Applications of Advanced Electronics Materials, Processes, and Devices

    SBC: RNET TECHNOLOGIES, INC.            Topic: MDA09T006

    The Missile Defense Agency (MDA) seeks technical investigations related to the development and application of advanced electronic materials, processes, and devices to meet its need for radiation hardened, high performance electronics for critical space and missile applications. With the advent of smaller transistor dimensions and reductions in price per bit, significant changes in materials and pr ...

    STTR Phase I 2010 Department of DefenseMissile Defense Agency
  9. Fabrication of Ta-Hf-C-based Ultra High Temperature Composites via a

    SBC: UES, Inc.            Topic: MDA09T002

    This Phase I STTR program seeks a new fabrication method to produce stronger (>100 kpsi) and tougher (>10 MPa m1/2) ultra high temperature Ta-Hf-C-based composites (UHTC) with an outstanding oxidation resistance for use as thermal protection systems for hypersonic applications, as well as for advanced rocket nozzle throat components. UES will apply a novel "Top Down" approach to control the micro ...

    STTR Phase I 2010 Department of DefenseMissile Defense Agency
  10. High Fidelity Computational Models for Aggregated Tissue Interaction in Surgical Simulations

    SBC: CFD Research Corporation            Topic: DHP16A001

    Surgical simulations aiming to support surgeon practices and medical education have attracted enormous research effort over the last two decades. However, the physical reality, especially on simulating aggregated tissue interaction, is still unsatisfactory. In this proposed work, an open source surgery simulation framework, SoFMIS, will be utilized and enhanced with tissue interaction models to a ...

    STTR Phase I 2016 Department of DefenseDefense Health Agency
US Flag An Official Website of the United States Government