You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY21 is not expected to be complete until September, 2022.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Additive Manufacturing of 17-4 PH Stainless Steel Metal Matrix Composites using Nickel functionalized Carbon Nanotubes

    SBC: Shepra, Inc.            Topic: N16AT007

    Additive Manufacturing (AM) has a potential to significantly reduce the cost and lead time associated with the maintenance and sustainment issues faced by the US Navy. However, current materials such as 17-4 PH Stainless Steel typically achieve half the required mechanical properties when additively manufactured, thus limiting the use of AM in critical parts. Recent advancements in carbon nanotube ...

    STTR Phase I 2016 Department of DefenseNavy
  2. Advanced Materials for the Design of Lightweight JP5/JP8/DS2 Fueled Engines for Unmanned Aerial Vehicles (UAVs)

    SBC: Northwest Uld, Inc.            Topic: N10AT001

    Northwest UAV Propulsion Systems proposes using our purpose built heavy fuel engine designed and built in the USA for small unmanned aerial systems in the tier 2 & 3 class. We will be adding a lightweight ceramic material set combined with FEA (Finite Element Analysis) and heavy fuel atomizer (IRAD Project) to create a lightweight engine for a SUAS or STUAS class UAVs. The Ceramic material set is ...

    STTR Phase I 2010 Department of DefenseNavy
  3. Advanced, nanostructred low-friction coatings for foil air bearings

    SBC: MesoCoat            Topic: N16AT005

    During Phase I, we propose to develop nanostructured, low friction thermal sprayed coatings that are able to withstand high dynamic loadings. Additionally, the novel coatings will possess a low friction coefficients in humid air, dried conditions and various greases and lubricants. These novel nanostructured coatings will be manufactured by HVOF spraying of solid lubricants based nanostructured po ...

    STTR Phase I 2016 Department of DefenseNavy
  4. Advanced Ship-handling Simulators

    SBC: D'Angelo Technologies, LLC            Topic: N18AT014

    There is a need to create an automated, adaptive, real time coaching module that can integrate the Conning Officer Virtual Environment (COVE) along with the associated Intelligent Tutor System (COVE-ITS) and the Conning-Officer Ship Handling Assessment (COSA) together. By automating the evaluation process, Surface Warfare Officers (SWOs) will have the opportunity to use the COVE simulations more f ...

    STTR Phase I 2018 Department of DefenseNavy
  5. A Fast-Response, Electronically Controlled Fuel Injection System for Small Heavy Fuel Engines with Multi-Fuel Capabilities

    SBC: MAINSTREAM ENGINEERING CORPORATION            Topic: N10AT033

    Advances in electronically controlled injection technologies for diesel engines have provided a method to improve medium- to heavy-duty engine performance through increased injection pressures, multiple injections, and injection rate shaping. Although these injection systems have been primarily limited to larger engines, the ability to rapidly and precisely meter fuel for smaller engines is partic ...

    STTR Phase I 2010 Department of DefenseNavy
  6. A Hierarchical and Extendable, Component-Based Simulation Tool for Aircraft Thermal Management Systems

    SBC: CFD Research Corporation            Topic: N19BT025

    The requirements for thermal management on tactical aircraft systems have reached a level at which integrated system design must be considered early in the aircraft design process. An integrated propulsion, power and thermal modeling and simulation design approach is necessary for reduced size, weight and power requirements. At the same time, there is an urgent need for capabilities that enable an ...

    STTR Phase I 2019 Department of DefenseNavy
  7. AI-Driven, Secure Navy Mission Planning via Deep Reinforcement Learning and Attribute-Based Multi-Level Security

    SBC: E H Group, Inc.            Topic: N19BT029

    Current mission planning systems allow strike planners and operations centers to perform time-sensitive strike planning, execution monitoring, and validate mission effects using XML-based tools that visualize time critical attack plan and track plan status vs. execution. In this proposed STTR Phase I design for the Next Generation Navy Mission Planning (NGNMPS) system, we will identify expanded op ...

    STTR Phase I 2019 Department of DefenseNavy
  8. Analysis and Modeling of Foreign Object Damage (FOD) in Ceramic Matrix Composites (CMCs)

    SBC: N&R ENGNERING MGT SUPPORT SVCS            Topic: N10AT010

    The Phase I deliverable will be a physic-based model which represents a CMC gas turbine component concomitantly at the material level and the structural level. This model will be probabilistically analyzed to account for the uncertainties in material properties and the uncertainties in the size and impact velocities of possible foreign objects (FOD). A ceramic material must display sufficient capa ...

    STTR Phase I 2010 Department of DefenseNavy
  9. A New MOCVD Platform for Commercially Scalable Growth of-Ga2O3 Device Structures

    SBC: AGNITRON TECHNOLOGY, INC            Topic: N16AT023

    Future DoD and Navy missions require advances in current high voltage power electronics technology as existing technology and even recent promising advances in Silicon Carbide and Gallium Nitride based materials lack fundamental material properties to deliver switching capabilities needed for future high power converter applications, advanced radar and propulsion systems. Much interest has been re ...

    STTR Phase I 2016 Department of DefenseNavy
  10. Atomic Triaxial Magnetometer

    SBC: Vescent Photonics LLC            Topic: N19AT006

    Vescent Photonics and MIT Lincoln Labs (MIT-LL) propose to develop a quantum-based vector magnetometer with low size, weight, power, and cost (SWaP+C) for Navy applications. The proposed system will rely on probing magnetically-sensitive, atomic-like transitions of nitrogen-vacancy (NV) centers in diamond to provide stable, high-bandwidth readout of the vector magnetic field with sub-picotesla sen ...

    STTR Phase I 2019 Department of DefenseNavy
US Flag An Official Website of the United States Government