You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Active Electromechanical Suspension System for Planetary Rovers

    SBC: BALCONES TECHNOLOGIES LLC            Topic: T102

    Balcones Technologies, LLC proposes to adapt actively controlled suspension technology developed by The University of Texas at Austin Center for Electromechanics (CEM) for high performance off-road vehicles to address STTR 2009-1 Subtopic T1.02, Information Technologies for Intelligent Planetary Robots. In particular, our team will develop a concept design for an actively controlled ElectroMechan ...

    STTR Phase I 2010 National Aeronautics and Space Administration
  2. Innovative Solid State Lighting Replacements for Industrial and Test Facility Locations

    SBC: Energy Focus, Inc.            Topic: T1002

    The proposed innovation is the replacement of existing test stand and parking lot fixtures with current SSL LED technology. The replacement fixtures will reduce energy consumption, generate less heat and provide maintenance free operation for over 50,000 hours. An explosion-proof fixture is capable of containing an internal combustion event without allowing flames or hot gasses to escape to the s ...

    STTR Phase I 2010 National Aeronautics and Space Administration
  3. Magnetically Modified Asymmetric Supercapacitors

    SBC: GINER INC            Topic: T601

    This Small Business Innovation Research Phase I project is for the development of an asymmetric supercapacitor that will have improved energy density and cycle life. Supercapacitors that utilize an aqueous electrolyte are limited to a maximum voltage of 1 volt due to the decomposition of water. Methods used to increase voltage include use of an organic electrolyte, which introduces additional comp ...

    STTR Phase I 2010 National Aeronautics and Space Administration
  4. An Approach to Health Management and Sustainability for Critical Aircraft Systems

    SBC: Impact Technologies            Topic: T101

    Impact Technologies, in collaboration with the Georgia Institute of Technology and its industrial partners, proposes to develop and demonstrate innovative technologies to integrate anomaly detection and failure prognosis algorithms into automated fault mitigation strategies for advanced aircraft controls. Traditional reactive fault tolerant control approaches fail to provide optimal fault mitigati ...

    STTR Phase I 2010 National Aeronautics and Space Administration
  5. Acoustic Reduction of Flow Separation

    SBC: LYNNTECH INC.            Topic: T201

    Airfoils produce more lift and less drag when the boundary layer is attached to the airfoil. With most aircraft there are combinations of airspeed and angle of attack where the boundary layer at least partially detaches from the airfoil. Reducing boundary layer detachment will increase lift and reduce drag. This will reduce fuel consumption saving money for the operator and improving control fo ...

    STTR Phase I 2010 National Aeronautics and Space Administration
  6. Microchannel Thermo Catalytic Ignition for Advanced Mono- and Bipropellants

    SBC: Plasma Processes, LLC            Topic: T301

    Small and micro-spacecrafts require the efficient, micro-propulsion systems. Chemical micro-propulsion is best suited for use as primary thrust, orbital insertion and attitude control because of its high energy density. When grouped into arrays for larger thrust applications, micro-propulsion devices provide high propulsive flexibility or can be used as igniters. The proposed effort will focus ...

    STTR Phase I 2010 National Aeronautics and Space Administration
  7. Mesh Generation and Adaption for High Reynolds Number RANS Computations

    SBC: Research South, Inc.            Topic: T801

    This proposal offers to provide NASA with an automatic mesh generator for the simulation of aerodynamic flows using Reynolds-Averages Navier-Stokes (RANS) models. The tools will be capable of generating high-quality, highly-stretched (anisotropic) grids in boundary layer regions and transition smoothly to inviscid flow regions even in an adaptive context. The objective of the work is to offer a un ...

    STTR Phase I 2010 National Aeronautics and Space Administration
  8. Gaseous Helium Reclamation at Rocket Test Systems

    SBC: Sierra Lobo, Inc.            Topic: T1001

    The ability to restore large amounts of vented gaseous helium (GHe) at rocket test sites preserves the GHe and reduces operating cost. The used GHe is vented into the atmosphere, is non-recoverable, and costs NASA millions dollars per year. Helium, which is non-renewable and irreplaceable once released into the atmosphere, is continuously consumed by rocket test facilities at NASA centers such a ...

    STTR Phase I 2010 National Aeronautics and Space Administration
  9. Generation and Adaptive Modification of Anisotropic Meshes

    SBC: SIMMETRIX, INC.            Topic: T801

    The ability to quickly and reliably simulate high-speed flows over a wide range of geometrically complex configurations is critical to many of NASA's missions. Advances in CFD methods and parallel computing have provided NASA the core flow solvers to perform these simulations. However, the ease of use of these flow solvers and the reliability of the results obtained are a strong function of the te ...

    STTR Phase I 2010 National Aeronautics and Space Administration
  10. Next-Generation Ion Thruster Design Tool to Support Future Space Missions

    SBC: TECH-X CORPORATION            Topic: T301

    Computational tools that accurately predict the performance of electric propulsion devices are highly desirable by NASA and the broader electric propulsion community. Large investments in running the long duration test programs (> 20 kHrs) at NASA GRC can be reduced with computer models and allow more focus on exploring the NEXT ion thruster design for future space missions. The current state of e ...

    STTR Phase I 2010 National Aeronautics and Space Administration
US Flag An Official Website of the United States Government