You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. VOC sensor for Real-Time Physiological Status Monitoring

    SBC: TRITON SYSTEMS, INC.            Topic: DHP16C002

    Supplemental oxygen is needed by aircrews and divers. However, oxygen use is limited by the onset of pulmonary oxygen toxicity (PO2T) which can significantly damage pulmonary tissues leading to decreased performance among other adverse effects. A real time sensor that is sensitive and selective with fast response is needed to monitor warfighter breath for trace VOC (volatile organic compound) spe ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  2. Passive Pneumatic Prosthetic Ankle with Biomimetic Response

    SBC: ADA TECHNOLOGIES, INC.            Topic: DHP16C007

    The Defense Health Program seeks to improve the lives of service members suffering below knee amputations through the development of a non-powered lower extremity prosthesis designed to restore range of motion and power generation to that of an uninjured anatomical ankle. Current passive systems are still in early stages of development and typically only address one aspect of what the Defense Heal ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  3. Wearable Medical Electro-textile System for the Warfighter

    SBC: TRITON SYSTEMS, INC.            Topic: DHA17A001

    Triton Systems, Inc., teamed with an academic partner, propose to: a) investigate the intensity and shape of the electromagnetic field (EMF) radiated by the human body, and b) develop a simulation of the resulting field to further explore the use of the human EMF to predict warfighter physiological status.

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  4. Electrotextile Systems for Human Signatures Monitoring

    SBC: MANTEL TECHNOLOGIES, INC.            Topic: DHA17A001

    Investments by the Department of Defense (DOD) have led to the development and demonstration of electronic textiles capable of transforming traditional textile systems into wearable power and data systems. The Defense Health Agency (DHA) has identified an opportunity to leverage advancements in smart garment systems for military personnel to aid in the prediction in performance declines and healt ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  5. Principled Design of an Augmented Reality Trainer for Medics

    SBC: UNVEIL LLC            Topic: DHA17A003

    Recent advances in augmented reality (AR) offer valuable opportunities for simulationbased training outside of a medical simulator facility. The potential benefits for combat casualty care training are particularly powerful, as over 100,000 U.S. military medical personnel must be prepared to quickly respond to a broad range of injuries at any point in time. We propose to develop and evaluate a hig ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  6. Medic-ART: Medics Augmented Reality Trainer

    SBC: APTIMA INC            Topic: DHA17A003

    Navy corpsmen have helped achieve a remarkable survival rate for the warfighters, civilians, and enemy combatants whom they serve. But this success masks significant challenges. Training corpsmen is costly; it addresses primarily the acquisition of skills (rather than maintenance); it fails to convey the perceptual and cognitive skills to handle complex combat wounds; the design of training techno ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  7. Wireless Non-Invasive Advanced Control of Microprocessor Prostheses and Orthoses

    SBC: LIBERATING TECHNOLOGIES INC            Topic: DHA17A005

    There are several current and imminent orthotic and prosthetic (OandP) fitting scenarios that would greatly benefit from the ability to wirelessly collect and transmit physiological information from the user. Both upper- and lower- limb OandP fittings that: 1) use osseointegration, 2) have cable management issues, and 3) could benefit from physiological information from locations proximal to the ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  8. Non-contact Tissue Viability Assessment (NTVA)

    SBC: VIVONICS INC            Topic: DHA17A006

    Selecting the level of debridement sufficient to minimize inflammation and determining the optimal treatment in a timely fashion is critical given the risks of infection and sepsis. Grafting success is dependent on the removal of all necrotic tissue and requires the presence of highly-vascularized granulation tissue. The goal of early debridement for grafting is to remove all the devitalized tis ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  9. Real-time Modulated Imaging for Assessment of Tissue Viability Prior to Skin Grafts

    SBC: Modulated Imaging Inc.            Topic: DHA17A006

    There is a lack of quantitative tools to accurately map tissue viability in a rapid and quantitative manner so a surgeon can properly excise tissue prior to grafting. Spatial Frequency Domain Imaging (SFDI) is an optical method that has been shown to be a reliable method for physiology assessment - particularly for burn depth. SFDI measures of tissue structure (scattering) and function (hemoglobi ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  10. In-Mask Sensors for Physiological Investigation of Respiratory Exhalation- INSPIRE

    SBC: MAKEL ENGINEERING, INC.            Topic: DHP16C002

    Makel Engineering, Inc. and Sandia National Laboratories propose to demonstrate an advanced multi-modal sensor system suitable for in-situ analysis of exhaled VOCs for pilots, divers and field patients. Our proposed system will combine a micro-gas chromatograph (GC) and miniature ion mobility spectrometer (IMS) for detection of trace amounts of exhaled breath VOCs with miniature solid state sensor ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
US Flag An Official Website of the United States Government