You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Tin Whisker Mitigation by Photonic Sintering for Sn-based Surface Finishes

    SBC: APPLIED NANOTECH, INC.            Topic: MDA08T010

    Missile Defense Agency is seeking new technologies to reduce the tendency to form tin whiskers in electronic assemblies and microelectronic devices. RoHS regulations enacted by the European Union have generated a global shift toward Pb-free electronic components and circuitry. Pb-free solders create reliability problems in military applications such as aircraft and missiles that are subject to h ...

    STTR Phase II 2010 Department of DefenseMissile Defense Agency
  2. Novel Directed Energy Options in Ballistic Missile Defense

    SBC: Applied Physical Electronics, L.C.            Topic: MDA09T010

    Ballistic Missle Defense (BMD) systems vary wildly in size and scope and include ground-based interceptor platforms with anti-ballistic missile (ABM) warheads, air-based high-power laser platforms such as the Airborne Laser (ABL), and ship-based systems such as the Aegis BMD system. The problems addressed in this proposal are the traditionally large sizes, number of support systems required, and l ...

    STTR Phase I 2010 Department of DefenseMissile Defense Agency
  3. Multi Junction Solar cells for Satellite

    SBC: CFD RESEARCH CORPORATION            Topic: MDA09T005

    Higher efficiency solar cells are needed to reduce mass, volume, and cost of DoD space missions. However, to achieve higher efficiency and radiation hardness of the best to date multi-junction photovoltaic (PV) devices, several challenges must be addressed. This project aims to develop: 1) Quantum Well (QW)-based multi-junction cell that exhibits enhanced efficiency, and 2) Radiation-hardened PV c ...

    STTR Phase I 2010 Department of DefenseMissile Defense Agency
  4. Low Cost, High Performance Transmit/Receive Integrated Circuits on a single chip

    SBC: NOISEFIGURE RESEARCH LLC            Topic: MDA09T004

    Traditional RADAR implementations suffer from bulky transmitters with cluttered microwave plumbing and antenna support systems that make systems expensive. Today, phased array transceiver architectures providing moderate power (10–100W) can provide RADAR performance with beam-steering capabilities with modest size of the systems. However, these conventional phase array architectures do not scale ...

    STTR Phase I 2010 Department of DefenseMissile Defense Agency
  5. An Ultra-High Temperature Ceramic with Improved Fracture Toughness and Oxidation Resistance

    SBC: Plasma Processes, LLC            Topic: MDA09T002

    Hypersonic missile defense systems are being designed to reach global threats. During flight, external surfaces are predicted to reach temperatures in excess of 2200C. As a result, innovative, high performance thermal protection systems (TPS) are of great demand. Among ultra-high temperature ceramics (UHTC), it is well known that ZrB2- and HfB2-based materials have high melting temperatures and ...

    STTR Phase I 2010 Department of DefenseMissile Defense Agency
  6. Electro Optic Avionic Advanced Guidance, Navigation and Control (GNC) Algorithm Development to Enhance the Lethality of Interceptors Against Maneuveri

    SBC: POLARIS SENSOR TECHNOLOGIES INC            Topic: MDA08T003

    This Phase II effort will further develop a technique to improve current seeker discrimination and tracking capabilities using a unique particle filter algorithm (PFA) approach. The advancement represents a significant upgrade to current and future seekers facing advanced threats in stressing environments. Quantifiable improvements over many facets of the current approach have been realized during ...

    STTR Phase II 2010 Department of DefenseMissile Defense Agency
  7. Development for Radiation Hardened Applications of Advanced Electronics Materials, Processes, and Devices

    SBC: RNET TECHNOLOGIES INC            Topic: MDA09T006

    The Missile Defense Agency (MDA) seeks technical investigations related to the development and application of advanced electronic materials, processes, and devices to meet its need for radiation hardened, high performance electronics for critical space and missile applications. With the advent of smaller transistor dimensions and reductions in price per bit, significant changes in materials and pr ...

    STTR Phase I 2010 Department of DefenseMissile Defense Agency
  8. Fabrication of Ta-Hf-C-based Ultra High Temperature Composites via a

    SBC: UES INC            Topic: MDA09T002

    This Phase I STTR program seeks a new fabrication method to produce stronger (>100 kpsi) and tougher (>10 MPa m1/2) ultra high temperature Ta-Hf-C-based composites (UHTC) with an outstanding oxidation resistance for use as thermal protection systems for hypersonic applications, as well as for advanced rocket nozzle throat components. UES will apply a novel "Top Down" approach to control the micro ...

    STTR Phase I 2010 Department of DefenseMissile Defense Agency
  9. Software Defined Multi-Channel Radar Receivers for X-band Radars

    SBC: DGNSS Solutions, LLC            Topic: MDA09T003

    The primary objective of the proposed research is to develop proof of concept of a software programmable X-Band radar system using low cost antenna array technology with digital beamforming architecture based on multiple receiver channels. The performance objectives will aim at a minimum of 400 MHz instantaneous bandwidth and a minimum instantaneous dynamic range of 52 dB. The objective of the t ...

    STTR Phase I 2010 Department of DefenseMissile Defense Agency
  10. RF-IR Data Fusion

    SBC: DECIBEL RESEARCH, INC.            Topic: MDA12T002

    The development and integration of three unique and innovative algorithm prototypes into a"Fused Track and Characterization Schema"are proposed. This Schema will encompass the determination of signatures and characteristics of objects that can be identified by RF and EO/IR Sensors in order to enable multi-sensor data fusion and correlation. The first algorithm, the"3D Pose Estimation"Algorithm, p ...

    STTR Phase I 2013 Department of DefenseMissile Defense Agency
US Flag An Official Website of the United States Government