You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Miniature Electronic DFI for 5-20 Hp HFE

    SBC: JM HARWOOD, LLC            Topic: N10AT033

    JM Harwood, LLC, and UAH Propulsion Research Center propose the development of an electronic miniature Direct Fuel Injection (DFI) system for 5-20 hp heavy fuel engines. This highly integrated Very Small Injection Technology (V-SInTech) DFI system will be capable of (a) multiple injections per cycle, (b) variable injection timing, (c) variable spray penetration depth, (d) real-time closed loop mod ...

    STTR Phase I 2010 Department of DefenseNavy
  2. Coupling Collaboration to SOA Services and Decision Support for the Warfighter via Navy Wave

    SBC: HARMONIA HOLDINGS GROUP, LLC            Topic: N10AT045

    Collaboration between Navy warfighters at the Operational Level of War is essential. In the Navy today collaboration to achieve Commander’s Control Actions is done ashore and on large deck afloat platforms with video teleconferencing and voice over IP. But only those platforms have sufficient bandwidth, and even then available bandwidth drop during mission critical times. Meanwhile the only ubiq ...

    STTR Phase I 2010 Department of DefenseNavy
  3. Dynamic Physical/Data-Driven Models for System-Level Prognostics and Health Management

    SBC: GLOBAL STRATEGIC SOLUTIONS LLC            Topic: N10AT009

    Prognostics and health management (PHM) systems are critical for detecting impending faults and enabling a proactive decision process for maintenance or replacement of avionics systems before actual failures occur. A PHM system is essential to enhancing aircraft systems reliability and maintaining a high level of mission readiness and affordability. Current PHM advancements are focused on aircraft ...

    STTR Phase I 2010 Department of DefenseNavy
  4. A Fast-Response, Electronically Controlled Fuel Injection System for Small Heavy Fuel Engines with Multi-Fuel Capabilities

    SBC: MAINSTREAM ENGINEERING CORP            Topic: N10AT033

    Advances in electronically controlled injection technologies for diesel engines have provided a method to improve medium- to heavy-duty engine performance through increased injection pressures, multiple injections, and injection rate shaping. Although these injection systems have been primarily limited to larger engines, the ability to rapidly and precisely meter fuel for smaller engines is partic ...

    STTR Phase I 2010 Department of DefenseNavy
  5. Low-Cost Ball/Air/Magnetic Hybrid Bearing System for Extended-Life Micro Gas Turbine Engines

    SBC: XDOT ENGINEERING & ANALYSIS PLLC            Topic: N10AT037

    Micro gas turbine engines with state-of-the-art ultra-compact recuperators could be a real game-changer for small unmanned air vehicles and portable power generation. A key enabling technology for these engines is a low-cost, high speed bearing system that has long life, while operating without either a separate lubrication system, or oil in the fuel. For this Phase I STTR effort, Xdot Engineerin ...

    STTR Phase I 2010 Department of DefenseNavy
  6. Development of a Computational Method for Prediction of After-Burning Effect

    SBC: BUSA Engineering Consulting            Topic: N10AT002

    This proposal is being submitted in response to the solicitation topic N10A-T002 (Development of a Computational Method for Prediction of After Burning Effect) by BUSA Engineering Consulting (Dr. Jianghui Chao) in collaboration with University of Florida (PI: Prof. S. Balachandar). The overall objective of the proposed effort is to contribute to national defense and security by advancing the state ...

    STTR Phase I 2010 Department of DefenseNavy
  7. External Pipe Sound Pressure Level Sensor

    SBC: PROGENY SYSTEMS, LLC            Topic: N10AT016

    Stealth is a primary consideration in design and operation of ships and submarines in the Navy fleet. Noise in hydraulic systems and piping is one source of unwanted noise. A method to measure and monitor this noise is essential to controlling and eliminating these noise sources. With the assistance of UMASS Dartmouth we will present a method to externally measure the fluidborne sound pressure lev ...

    STTR Phase I 2010 Department of DefenseNavy
  8. Multi-Modal Knowledge Acquisition from Documents

    SBC: ObjectVideo            Topic: N10AT019

    Images with associated text are now available in vast quantities, and provide a rich resource for mining for the relationship between visual information and semantics encoded in language. In particular, the quantity of such data means that sophisticated machine learning approaches can be applied to determine effective models for objects, backgrounds, and scenes. Such understanding can then be used ...

    STTR Phase I 2010 Department of DefenseNavy
  9. Adaptive Turbine Engine Control for Stall Threat Identification and Avoidance

    SBC: AURORA FLIGHT SCIENCES CORPORATION            Topic: N10AT008

    Aurora Flight Sciences and MIT propose to develop a model-based adaptive health estimation and real-time proactive control to identify gas turbine engine stability risks and avoid them through control action. In this concept, the engine control system actively monitors sensors and actuators, compares them against physical models, and infers which components may be performing poorly and may need to ...

    STTR Phase I 2010 Department of DefenseNavy
  10. Development of a Computational Method for Prediction of After-Burning Effect

    SBC: Strategic Insight, Ltd.            Topic: N10AT002

    The research objective is to develop a fully functional computational method for prediction of the after-burning effect of different fuels in a wide range of temperature, pressure, and turbulence regimes. Achievement of the objective requires understanding and modeling of key phenomena including (a) post-detonation response of the fuels, (b) near-field coupling of detonation products with particul ...

    STTR Phase I 2010 Department of DefenseNavy
US Flag An Official Website of the United States Government