You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Thermal Barrier Coatings for Long Life in Marine Gas Turbine Engines

    SBC: Directed Vapor Technologies International, Inc.            Topic: N16AT019

    The marine environment is extremely corrosive to turbine engine components due to the large amount of salts from the sea coupled with the fuel impurities and the high temperatures experienced. To cope with future operational requirements, a strong need exists to develop novel, protective coatings to provide environmental protection from hot corrosion and oxidation conditions across a wide range of ...

    STTR Phase I 2016 Department of DefenseNavy
  2. SCOUT: Smart Communication Of Unexpected Threats

    SBC: Commonwealth Computer Research Inc            Topic: N16AT020

    The Navy needs to fuse and distill time-stamped data sources as varied as overhead imagery and Twitter feeds into actionable intelligence such as alerts, on-demand reports about entities of interest, and search capabilities. In order to enable such analytics, it is effective to learn fixed dimensional vectors (embeddings) representing the entities present in these heterogeneous data sources, which ...

    STTR Phase I 2016 Department of DefenseNavy
  3. Improved Synthesis and Characterization of New Energetic Compounds

    SBC: TDA RESEARCH, INC.            Topic: N16AT021

    The Navy seeks new energetic and oxidizing ingredients for use in propellant and explosive formulations of modern weapons systems. With recent developments in the design and synthesis of new energetic molecules, we have the opportunity to take the steps needed before these materials can successfully transition to use in next generation propulsion and ordnance systems. TDA Research and the Universi ...

    STTR Phase I 2016 Department of DefenseNavy
  4. Integrated Computational Material Engineering Approach to Additive Manufacturing for Stainless Steel (316L)

    SBC: SCIENTIFIC FORMING TECHNOLOGIES CORPORATION            Topic: N16AT022

    We are proposing to identify an ICME architecture that will enable the multi-scale modeling of additive manufacturing (AM) process at both the component level as well as at the meso-scale level such that the final part quality and performance can be predicted accurately. At the component level, the proposed ICME framework would help in predicting residual stresses, distortion and the necessary sup ...

    STTR Phase I 2016 Department of DefenseNavy
  5. A New MOCVD Platform for Commercially Scalable Growth of-Ga2O3 Device Structures

    SBC: AGNITRON TECHNOLOGY, INC.            Topic: N16AT023

    Future DoD and Navy missions require advances in current high voltage power electronics technology as existing technology and even recent promising advances in Silicon Carbide and Gallium Nitride based materials lack fundamental material properties to deliver switching capabilities needed for future high power converter applications, advanced radar and propulsion systems. Much interest has been re ...

    STTR Phase I 2016 Department of DefenseNavy
  6. Aerial Aquatic Ordnance Removal Vehicle (AEQUOR-V)

    SBC: AURORA FLIGHT SCIENCES CORPORATION            Topic: N16AT025

    With Project AEQUOR-V Aurora, in partnership with Purdue University, proposes to complete the conceptual design of a hybrid unmanned air/underwater vehicle (HUA/UV) capable of transitioning repeatedly between aerial and underwater operations in a single mission, operating in water depths up to 40 ft, and carrying a significant payload. To accomplish this goal, Aurora will build on design experienc ...

    STTR Phase I 2016 Department of DefenseNavy
  7. Autonomous Underwater Vehicle Equipped for Air and Sea Locomotion

    SBC: BARRON ASSOCIATES, INC.            Topic: N16AT025

    The Navy seeks to develop a hybrid air/underwater autonomous vehicle that can rapidly inspect and/or engage submerged objects spread over great distances by flying through the air between sequential underwater operations. Compared to a standard AUV, the flight capability will offer substantial operational advantage by reducing mission time. For comparison, an AUV like the Remus-100 has a maximum s ...

    STTR Phase I 2016 Department of DefenseNavy
  8. Detecting Substandard, Nonconforming, Improperly Processed and Counterfeit Materiel

    SBC: VIBRANT CORP            Topic: DLA15C001

    Vibrant Corporation and Sandia National Laboratories (SNL) propose to apply Process Compensated Resonance Testing (PCRT) to the DLA's need for an NDI method to detect counterfeit, nonconforming and improperly processed materiel. PCRT collects and analyzes the resonance frequencies of a component to detect structural defects, characterize material, analyze population variation, monitor manufacturin ...

    STTR Phase I 2016 Department of DefenseDefense Logistics Agency
  9. Infectious Disease Diagnostics and Differentiation of Viral vs. Bacterial Infections for Point of Care Applications

    SBC: GENECAPTURE, INC.            Topic: CBD15C001

    The modern warfighter faces the constant threat of endemic infections, multi-drug resistant bacteria and Biological Warfare Agents. In order to provide accurate front-line treatment that will curtail the overuse of antibiotics, a rapid and robust molecula

    STTR Phase I 2016 Department of DefenseOffice for Chemical and Biological Defense
  10. Quantifying Uncertainty in the Mechanical Performance of Additively Manufactured Parts Due to Material and Process Variation

    SBC: TECHNICAL DATA ANALYSIS, INC.            Topic: N16AT004

    TDA has teamed up with Lawrence Livermore National Laboratory as its research institution collaborator to address the target STTR topic objective of quantifying the uncertainties in the mechanical behavior of the AM parts. To quantify uncertainties by minimizing both the computational burden and expensive testing and also overcoming the IP concerns, we propose a novel approach with three layered i ...

    STTR Phase I 2016 Department of DefenseNavy
US Flag An Official Website of the United States Government