You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Active Sonar Statistical Estimation Tool (ASSET)

    SBC: DANIEL H WAGNER ASSOCIATES INC            Topic: N18AT002

    As underwater threats continue to evolve, active sonar systems and operators must evolve with them, requiring improvements to sources, receivers, signal processing algorithms, and search mission planning applications in order to maintain and improve detection rates. Any improvements in the latter requires a detailed and accurate understanding of the acoustic underwater environment, and the underly ...

    STTR Phase I 2018 Department of DefenseNavy
  2. Adaptive multi-sensor wide area situational awareness system

    SBC: Neya Systems, LLC            Topic: AF12BT14

    ABSTRACT: Confronted by a vast quantity of data, presented piecemeal, sporadically and at varying levels of detail, the human analyst is often overwhelmed when trying to effectively monitor even medium-sized areas of interest. Offline, there is a wealth of data, resolution, and time to pick through and find activities of interest. Given a large amount of high resolution data, we can simulate situ ...

    STTR Phase I 2013 Department of DefenseAir Force
  3. Additive Manufacturing of Metallic Materials for High Strain Rate Applications

    SBC: MRL MATERIALS RESOURCES LLC            Topic: MDA17T001

    Metallic additive manufacturing (AM) is an attractive technology for the production of lethality test articles due to the potential for significantly reduced lead time and manufacturing cost.However, in order to be effective in providing accurate lethality data, the properties of the AM material have to match closely the properties of conventionally manufactured alloys found in real threat targets ...

    STTR Phase I 2018 Department of DefenseMissile Defense Agency
  4. Additive Manufacturing of Multifunctional Nanocomposites

    SBC: Sciperio, Inc.            Topic: A13AT010

    Sciperio with team members Georgia Institute of Technology and Centecorp have teamed up to develop an Additive Manufacturing Composite using nano and micro fillers. The team will develop multi-scale models that are supported by experimental characterization for advanced 3D Printable materials. Inelastic response of high strength hierarchical structures composed of engineered materials and specif ...

    STTR Phase I 2013 Department of DefenseArmy
  5. Additive Manufacturing of Scalable 3D Resonators

    SBC: GLOBAL RESEARCH & DEVELOPMENT INC            Topic: 29b

    This proposal is submitted in response to the SBIR/STTR Office of Science related to Quantum Information Science (QIS) Supporting Technologies. There is the need for fabrication techniques for scalable 3D Superconducting Radio Frequency (SRF) Structures for Quantum Information Systems. In this proposal we will develop an additive manufacturing approach to developing superconducting 3D microwave re ...

    STTR Phase I 2018 Department of Energy
  6. Additive Manufacturing Sensor Fusion Technologies for Process Monitoring and Control.

    SBC: ARCTOS Technology Solutions, LLC            Topic: DLA18A001

    Universal Technology Corporation (UTC) has teamed with the University of Dayton Research Institute (UDRI), Stratonics, and Macy Consulting to demonstrate not only the transitionability into commercial systems, but also to develop the data analytics and monitoring and control requirements to extract the full value fromseveral sensors, including the Stratonics ThermaViz, acoustic and profilometry se ...

    STTR Phase I 2018 Department of DefenseDefense Logistics Agency
  7. Advanced Materials for the Design of Lightweight JP5/JP8/DS2 Fueled Engines for Unmanned Aerial Vehicles (UAVs)

    SBC: Northwest Uld, Inc.            Topic: N10AT001

    Northwest UAV Propulsion Systems proposes using our purpose built heavy fuel engine designed and built in the USA for small unmanned aerial systems in the tier 2 & 3 class. We will be adding a lightweight ceramic material set combined with FEA (Finite Element Analysis) and heavy fuel atomizer (IRAD Project) to create a lightweight engine for a SUAS or STUAS class UAVs. The Ceramic material set is ...

    STTR Phase I 2010 Department of DefenseNavy
  8. Advanced Mediator Architectures for Efficient Electron Transfer in Enzymatic Fuel Cell Electrodes

    SBC: CFD RESEARCH CORPORATION            Topic: AF09BT03

    Our objective is to develop advanced mediator architectures for efficient electron transfer in enzymatic fuel cells (EFCs) for low power systems. The proposed EFC will leverage ongoing research at both CFDRC and Michigan State University to provide a fully-integrated lightweight, low-cost, manufacturable, and renewable power supply, for various military and civilian applications. EFC systems offer ...

    STTR Phase I 2010 Department of DefenseAir Force
  9. Advanced Membranes for CO2 Capture from Existing Coal-fired Power Plants

    SBC: NEXTECH MATERIALS, LTD.            Topic: 24a

    Coal is an abundant source of energy in the USA, but is not currently utilized effectively. Recently, the DOE has begun a carbon sequestration program is to develop advanced CO2 capture and compression technology for existing coal-fired plants with increased efficiency with no more than a 35% increase in the cost of electricity. This will require new approaches and technologies to be successful. N ...

    STTR Phase I 2010 Department of Energy
  10. Advanced Ship-handling Simulators

    SBC: D'Angelo Technologies, LLC            Topic: N18AT014

    There is a need to create an automated, adaptive, real time coaching module that can integrate the Conning Officer Virtual Environment (COVE) along with the associated Intelligent Tutor System (COVE-ITS) and the Conning-Officer Ship Handling Assessment (COSA) together. By automating the evaluation process, Surface Warfare Officers (SWOs) will have the opportunity to use the COVE simulations more f ...

    STTR Phase I 2018 Department of DefenseNavy
US Flag An Official Website of the United States Government