You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY21 is not expected to be complete until September, 2022.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Wide Bandgap Nanostructured Space Photovoltaics

    SBC: Firefly Technologies            Topic: T3

    Firefly, in collaboration with Rochester Institute of Technology, proposes an STTR program for the development of a wide-bandgap GaP-based space solar cell capable of efficient operation at temperatures above 300oC. Efficiency enhancement will be achieved by the introduction of InGaP quantum wells within the active region of the wide-gap base material. The introduction of these nanoscale features ...

    STTR Phase I 2010 National Aeronautics and Space Administration
  2. Nanowire Photovoltaic Devices

    SBC: Firefly Technologies            Topic: T3

    Firefly, in collaboration with Rochester Institute of Technology, proposes an STTR program for the development of a space solar cell having record efficiency exceeding 40% (AM0) by the introduction of nanowires within the active region of the current limiting sub-cell. The introduction of these nanoscale features will enable realization of an intermediate band solar cell (IBSC), while simultaneous ...

    STTR Phase I 2010 National Aeronautics and Space Administration
  3. MeshSLAM: Robust Localization and Large-Scale Mapping in Barren Terrain

    SBC: Mesh Robotics, LLC            Topic: T401

    Robots need to know their location to map of their surroundings but without global positioning data they need a map to identify their surroundings and estimate their location. Simultaneous localization and mapping (SLAM) solves these dual problems at once. SLAM does not depend on any kind of infrastructure and is thus a promising localization technology for NASA planetary missions and for many ter ...

    STTR Phase I 2013 National Aeronautics and Space Administration
  4. Improved Foreign Object Damage Performance for 2D Woven Ceramic Matrix Composites

    SBC: MATERIALS RESEARCH & DESIGN INC            Topic: T1201

    As the power density of advanced engines increases, the need for new materials that are capable of higher operating temperatures, such as ceramic matrix composites (CMCs), is critical for turbine hot-section static and rotating components. Such advanced materials have demonstrated the promise to significantly increase the engine operating temperature relative to conventional super alloy metallic b ...

    STTR Phase I 2013 National Aeronautics and Space Administration
  5. Particle Flow Physics Modeling for Extreme Environments

    SBC: CFD Research Corporation            Topic: T403

    The liberation of particles induced by rocket plume flow from spacecraft landing on unprepared regolith of the Moon, Mars, and other destinations poses high mission risks for robotic and human exploration activities. This process occurs in a combination of "extreme environments" that combine low gravity, little or no atmosphere, with rocket exhaust gas flow that is supersonic and partially rarefie ...

    STTR Phase I 2013 National Aeronautics and Space Administration
  6. Local Navigation in GNSS and Magnetometer-Denied Environments

    SBC: PRIORIA ROBOTICS HOLDINGS, INC.            Topic: T501

    The proposed solution exploits recent advances in computer vision to conceive of a single-camera + gyro + accelerometer vision-based navigation solution such that the processing will be lightweight (requiring only a single optical flow sample per frame). Known landmarks (natural or artificial) will have absolute positions known to planetary exploration worker robots. The worker robot can identif ...

    STTR Phase I 2013 National Aeronautics and Space Administration
  7. High-Fidelity Prediction of Launch Vehicle Lift-off Acoustic Environment

    SBC: CFD Research Corporation            Topic: T101

    Launch vehicles experience extreme acoustic loads during liftoff driven by the interaction of rocket plumes and plume-generated acoustic waves with ground structures. Currently employed predictive capabilities to model the complex turbulent plume physics are too dissipative to accurately resolve the propagation of acoustic waves throughout the launch environment. Higher fidelity liftoff acoustic a ...

    STTR Phase I 2013 National Aeronautics and Space Administration
  8. High Performance Multiphase Combustion Tool Using Level Set-Based Primary Atomization Coupled with Flamelet Models

    SBC: STREAMLINE NUMERICS, INC.            Topic: T101

    The innovative methodologies proposed in this STTR Phase 1 project will enhance Loci-STREAM which is a high performance, high fidelity simulation tool already being used at NASA for a variety of CFD applications. This project will address critical needs in order to enable fast and accurate simulations of liquid space propulsion systems (using propellants such as LOX, LCH4, RP-1, LH2, etc.). The pr ...

    STTR Phase I 2013 National Aeronautics and Space Administration
  9. Power Generating Coverings and Casings

    SBC: Streamline Automation, LLC            Topic: T301

    Advances in structured heterogeneity together with nanomaterials tailoring has made it possible to create thermoelectrics using high temperature, polymer composites. While such thermoelectrics do not have the capability to approach the efficiency of top performing ceramic modules such as BiTe, they do provide two unique aspects of use in energy scavenging: the ability to cover large areas easily, ...

    STTR Phase I 2013 National Aeronautics and Space Administration
  10. MEMS Based Solutions for an Integrated and Miniaturized Multi-Spectrum Energy Harvesting and Conservation System

    SBC: Radiance Technologies, Inc.            Topic: T301

    The objective of this proposal is to develop three unique energy harvesting technologies utilizing our existing research strengths that will be of interest and utility to NASA applications and environmental conditions. By developing multiple technologies, NASA will be able to harvest energy from multiple waste energy sources, namely environmental vibrations, thermal energy, and solar flux. These d ...

    STTR Phase I 2013 National Aeronautics and Space Administration
US Flag An Official Website of the United States Government