You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Methodology Development of Atomistically-Informed Chemical Kinetics Model for Rubber Composite Materials

    SBC: ADVANCED COOLING TECHNOLOGIES INC            Topic: N10AT005

    This Small Business Technology Transfer (STTR) Phase 1 project will develop a novel methodology to build atomistically-informed chemical kinetics models for oxidation and pyrolysis in particulate filled-rubber composite materials. In Navy operations, these materials are widely used in extreme temperature conditions and oxidizing environments. Accurate prediction of the material properties under th ...

    STTR Phase I 2010 Department of DefenseNavy
  2. Development of Surface Reaction Mechanism for C-SiC-SiO2-Rubber Composite Oxidation in Extreme Oxidizing Condition

    SBC: CFD RESEARCH CORPORATION            Topic: N10AT005

    The purpose of this STTR is to develop comprehensive detailed kinetics for oxidation of C-SiC-SiO2-rubber in extreme oxidizing environment. This material is used as a coating on the outer surface of Navy weapon systems. In order to predict the fate of this material under extreme conditions and mitigate the degradation of the coating, a comprehensive oxidation mechanism is required. In Phase I, CFD ...

    STTR Phase I 2010 Department of DefenseNavy
  3. Development of a Computational Method for Prediction of After-Burning Effect

    SBC: COMBUSTION RESEARCH & FLOW TECHNOLOGY INC            Topic: N10AT002

    The problem of interest is the development of a physics based model for conducting high-fidelity simulation of afterburning munitions, which are unique in that that they contain solid and/or liquid fuels that continue burning after the initial detonation to raise the temperature, enhance the overpressure, and strengthen secondary shock waves. From the standpoint of first-principles modeling, accur ...

    STTR Phase I 2010 Department of DefenseNavy
  4. Wave Detection, Prediction, and Reaction System (WDPRS)

    SBC: DANIEL H WAGNER ASSOCIATES INC            Topic: N10AT036

    In this project Daniel H. Wagner Associates (DHWA), with NASA’s Jet Propulsion Laboratory (JPL) and MARK Resources, Inc. (MRI) as our subcontractors, will develop a lightweight, low-cost Wave Detection, Prediction, and Reaction System (WDPRS) that is designed to reduce the hazard of foundering and/or the violent shocks, pitches, and rolls resulting from improper handling of a small craft in elev ...

    STTR Phase I 2010 Department of DefenseNavy
  5. Translation of Mission Directives to Behaviors Including Thresholds in Autonomous Undersea Search Sensor Elements of Distributed Sensing Systems

    SBC: DANIEL H WAGNER ASSOCIATES INC            Topic: N10AT038

    Autonomous unmanned distributed sensing systems are in the process of revolutionizing undersea military search. The importance of search to military operations is greatest in the environment where detection is the most difficult, i.e. undersea operations. Now distributed sensing systems promise an order of magnitude reduction in search times for enemy undersea targets. In order to realize the pote ...

    STTR Phase I 2010 Department of DefenseNavy
  6. Modeling of Small-scale Tilt-rotor Unmanned Air Vehicles

    SBC: Dragonfly Pictures, Inc.            Topic: N09BT039

    DPI will be well positioned to deliver a fully functional prototype in Phase II that exceeds the proposed performance goals of: vertical take-off and landing, endurance of 37.5 hours, range of 3750km. The UAS will be powered by a combination of heavy fuel engines and electric auxiliary motors, and will be suited to deployment from a single vehicle (e.g., JLTV), by two operators. This 150 lb vehicl ...

    STTR Phase I 2010 Department of DefenseNavy
  7. Miniature Electronic DFI for 5-20 Hp HFE

    SBC: JM HARWOOD, LLC            Topic: N10AT033

    JM Harwood, LLC, and UAH Propulsion Research Center propose the development of an electronic miniature Direct Fuel Injection (DFI) system for 5-20 hp heavy fuel engines. This highly integrated Very Small Injection Technology (V-SInTech) DFI system will be capable of (a) multiple injections per cycle, (b) variable injection timing, (c) variable spray penetration depth, (d) real-time closed loop mod ...

    STTR Phase I 2010 Department of DefenseNavy
  8. A Fast-Response, Electronically Controlled Fuel Injection System for Small Heavy Fuel Engines with Multi-Fuel Capabilities

    SBC: MAINSTREAM ENGINEERING CORP            Topic: N10AT033

    Advances in electronically controlled injection technologies for diesel engines have provided a method to improve medium- to heavy-duty engine performance through increased injection pressures, multiple injections, and injection rate shaping. Although these injection systems have been primarily limited to larger engines, the ability to rapidly and precisely meter fuel for smaller engines is partic ...

    STTR Phase I 2010 Department of DefenseNavy
  9. Innovative Passive Magnetic Thrust Bearings for High-Speed Turbomachinery

    SBC: MAINSTREAM ENGINEERING CORP            Topic: N10AT037

    In miniature gas turbines for UAV applications, traditional bearings exhibit a typical lifetime of only 25 hours due to excessive axial loading. Mainstream proposes to use a passive, permanent magnet thrust bearing to alleviate this problem and increase service life to over 1000 hours. Since this type of bearing is non-contacting, it can operate at very high rotational speeds with minimal heat gen ...

    STTR Phase I 2010 Department of DefenseNavy
  10. Demonstration of a JP-8 Powered Compact ECU

    SBC: MAINSTREAM ENGINEERING CORP            Topic: OSD09T002

    Military shelters currently use electrically driven Environmental Control Units (ECUs) to provide cooling for the air inside the shelter. The ECU is vapor compression cycle powered by a diesel generator, operating on JP-8 fuel. Other than fueling jet engines, the largest drain on U.S. military fuel supplies in current operations comes from running generators at forward operating bases. In hot cli ...

    STTR Phase I 2010 Department of DefenseNavy
US Flag An Official Website of the United States Government