You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY21 is not expected to be complete until September, 2022.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Developing a Detailed Chemical Kinetic Model for C-SiC-SiO2-Rubber Composite Materials Exposed to High Temperature, High Pressure, Oxidizing Environme

    SBC: Aerodyne Research, Inc.            Topic: N10AT005

    The objective of this proposed Small Business Technology Transfer (STTR) effort is to develop an experimentally-validated, highly detailed chemical kinetic reference model of surface chemistry for C-SiC-SiO2 rubber composite materials exposed to high temperature, high pressure, oxidizing environments. This reference model will then be reduced into simplified reduced-order models that could be easi ...

    STTR Phase I 2010 Department of DefenseNavy
  2. Validation and Evaluation of Remote, Interactive Teams of Autonomous Systems (VERITAS)

    SBC: Aptima, Inc.            Topic: OSD09T004

    different modes, while using different combinations of subsystems. This presents a challenge for the personnel validating the system during design and development; the number of combinations of environments, modes, and subsystems is exponential. They cannot all be tested, so an optimal subset of tests must be run. We propose to develop VERITAS: Validation and Evaluation of Remote, Interactive Tea ...

    STTR Phase I 2010 Department of DefenseNavy
  3. Prediction of the Full-Scale Cook-off Response Based on Small-Scale Testing

    SBC: BLAZETECH CORPORATION            Topic: N10AT011

    We propose to develop scaling relationships for reaction violence in the cook-off of energetic materials such as explosives or propellants. This will be accomplished by a coordinated effort consisting of data review and analysis. The anticipated results include key non-dimensional parameters that incorporate the thermo-physical, flow, thermodynamic, and kinetic properties of the material, the heat ...

    STTR Phase I 2010 Department of DefenseNavy
  4. Photo Triggered Carbon Nanotube Field Emission Cathode for Free Electron Lasers

    SBC: Busek Co., Inc.            Topic: N10AT023

    Busek Co. Inc (Busek) and Massachusetts Institute of Technology (MIT) propose to develop the design of a photon actuated, ultrafast carbon nanotube (CNT) field emission cathodes for high-power electron beam accelerator sources. The cathode will be based on massive arrays of Vertically Aligned Carbon Nano-Fibers (VA-CNFs) that are individually controlled by a vertical ungated field effect transisto ...

    STTR Phase I 2010 Department of DefenseNavy
  5. Enhanced Riverine Drifter

    SBC: C-2 INNOVATIONS INC.            Topic: N10AT024

    The proposed Autonmous Reactive Ferrrying Drifter (ARF-D) provides wide measured swath, autonomously maintains a buffer distance from close-shore snags, and by utilizing river flow provides a very low power approach to obtaining cross-river surveying, providing greater coverage with minimal power penalty. By randomizing the cross-river transit paths multiple ARF-D units will naturally overcome the ...

    STTR Phase I 2010 Department of DefenseNavy
  6. Development of Surface Reaction Mechanism for C-SiC-SiO2-Rubber Composite Oxidation in Extreme Oxidizing Condition

    SBC: CFD Research Corporation            Topic: N10AT005

    The purpose of this STTR is to develop comprehensive detailed kinetics for oxidation of C-SiC-SiO2-rubber in extreme oxidizing environment. This material is used as a coating on the outer surface of Navy weapon systems. In order to predict the fate of this material under extreme conditions and mitigate the degradation of the coating, a comprehensive oxidation mechanism is required. In Phase I, CFD ...

    STTR Phase I 2010 Department of DefenseNavy
  7. FreeSwim: Autonomous Behaviors for Undersea Sensors

    SBC: Charles River Analytics, Inc.            Topic: N10AT038

    Future naval operations are expected to make extensive use of unmanned vehicles to support a range of operations, including intelligence gathering, mine warfare, force protection, and anti-submarine warfare. Current unmanned systems are typically controlled remotely by an operator who directly manipulates a control interface for the vehicle. The effectiveness of this approach is obviously limited ...

    STTR Phase I 2010 Department of DefenseNavy
  8. Automated Linguistic Analysis Revealing Misrepresentation and Messaging (ALARMM)

    SBC: Charles River Analytics, Inc.            Topic: N10AT029

    The proposed Automated Linguistic Analysis Revealing Misrepresentation and Messaging (ALARMM) system significantly advances the state of the art in detecting deception in unstructured data such as Web sites and chat messages. Our research focuses on automated techniques based on linguistic theory that can detect both misrepresentations and hidden messages. The proposed work draws on the field of s ...

    STTR Phase I 2010 Department of DefenseNavy
  9. MANERVA: Mission Assessment of Non-Manned Entities for Rating the Validation of Autonomy

    SBC: Charles River Analytics, Inc.            Topic: OSD09T004

    The dependability, persistence, and versatility of unmanned systems have made them indispensable assets in today’s warfighting. As they are tasked to fulfill new missions in unpredictable, dynamic environments, they are transitioning from remote control into the realm of autonomy. Here they perform rapid and semi-autonomous behaviors, such as re-planning and re-tasking, to accomplish mission obj ...

    STTR Phase I 2010 Department of DefenseNavy
  10. Graded-Composition Refractory Coatings for Protection of Cu-Rails for Electromagnetic Launchers

    SBC: Engineered Coatings, Inc.            Topic: N10AT025

    The Navy is developing an electromagnetic (EM) launcher for long-range naval surface-fire-support. Severe operating conditions of the EM system place stringent requirements for materials, including high current and magnetic fields, high temperatures, contact with liquid metals, high stress/gouging from balloting contacts and high-speed-sliding electrical-contact with an Al armature. Engineered Coa ...

    STTR Phase I 2010 Department of DefenseNavy
US Flag An Official Website of the United States Government