You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY21 is not expected to be complete until September, 2022.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. High-Fidelity Gas and Granular Flow Physics Models for Rocket Exhaust Interaction with Lunar Soil

    SBC: CFD Research Corporation            Topic: T701

    Current modeling of Lunar and Martian soil erosion and debris transport caused by rocket plume impingement lacks essential physics from the peculiar granular characteristics of highly irregular regolith particles. Current granular mechanics models are based on mono-disperse spherical particles empiricism unsuitable for capturing the poly-disperse irregularly shaped grain mechanics. CFDRC and the U ...

    STTR Phase II 2010 National Aeronautics and Space Administration
  2. Innovative Solid State Lighting Replacements for Industrial and Test Facility Locations

    SBC: Energy Focus, Inc.            Topic: T1002

    The proposed innovation is the replacement of existing test stand and parking lot fixtures with current SSL LED technology. The replacement fixtures will reduce energy consumption, generate less heat and provide maintenance free operation for over 50,000 hours. An explosion-proof fixture is capable of containing an internal combustion event without allowing flames or hot gasses to escape to the s ...

    STTR Phase I 2010 National Aeronautics and Space Administration
  3. Magnetically Modified Asymmetric Supercapacitors

    SBC: Giner, Inc.            Topic: T601

    This Small Business Innovation Research Phase I project is for the development of an asymmetric supercapacitor that will have improved energy density and cycle life. Supercapacitors that utilize an aqueous electrolyte are limited to a maximum voltage of 1 volt due to the decomposition of water. Methods used to increase voltage include use of an organic electrolyte, which introduces additional comp ...

    STTR Phase I 2010 National Aeronautics and Space Administration
  4. Thermal Stir Welding of High Strength and High Temperature Alloys for Aerospace Applications

    SBC: Keystone Synergistic Enterprises, LLC            Topic: T901

    The Keystone and MSU team propose to build on the successful feasibility demonstration conducted during Phase I to complete the development of solid-state joining of high strength and temperature alloys utilizing the Thermal Stir Welding process. The focus alloy for this project is Haynes 230; the alloy of choice typically utilized in rocket engine nozzel skirts. This class of alloy is difficult t ...

    STTR Phase II 2010 National Aeronautics and Space Administration
  5. Tunable, Narrow Line Width Mid-Infrared Laser Source

    SBC: Maxion Technologies, Inc.            Topic: T401

    The purpose of this project is to advance the technology of interband cascade (IC) lasers and their facet coatings and to design, build, and deliver to NASA a tunable, narrow linewidth mid-infrared laser source operating in the 3.2 ¡V 3.6 micron wavelength band. Initial work will develop improved IC laser active regions as well as ultra-low-reflectivity anti-reflection facet coatings. We will als ...

    STTR Phase II 2010 National Aeronautics and Space Administration
  6. Microchannel Thermo Catalytic Ignition for Advanced Mono- and Bipropellants

    SBC: Plasma Processes, LLC            Topic: T301

    Small and micro-spacecrafts require the efficient, micro-propulsion systems. Chemical micro-propulsion is best suited for use as primary thrust, orbital insertion and attitude control because of its high energy density. When grouped into arrays for larger thrust applications, micro-propulsion devices provide high propulsive flexibility or can be used as igniters. The proposed effort will focus ...

    STTR Phase I 2010 National Aeronautics and Space Administration
  7. Mesh Generation and Adaption for High Reynolds Number RANS Computations

    SBC: Research South, Inc.            Topic: T801

    This proposal offers to provide NASA with an automatic mesh generator for the simulation of aerodynamic flows using Reynolds-Averages Navier-Stokes (RANS) models. The tools will be capable of generating high-quality, highly-stretched (anisotropic) grids in boundary layer regions and transition smoothly to inviscid flow regions even in an adaptive context. The objective of the work is to offer a un ...

    STTR Phase I 2010 National Aeronautics and Space Administration
  8. Gaseous Helium Reclamation at Rocket Test Systems

    SBC: Sierra Lobo, Inc.            Topic: T1001

    The ability to restore large amounts of vented gaseous helium (GHe) at rocket test sites preserves the GHe and reduces operating cost. The used GHe is vented into the atmosphere, is non-recoverable, and costs NASA millions dollars per year. Helium, which is non-renewable and irreplaceable once released into the atmosphere, is continuously consumed by rocket test facilities at NASA centers such a ...

    STTR Phase I 2010 National Aeronautics and Space Administration
  9. Advanced Simulation Framework for Design and Analysis of Space Propulsion Systems

    SBC: STREAMLINE NUMERICS, INC.            Topic: T901

    The innovation proposed here is a high-performance, high-fidelity framework in the computational fluid dynamics (CFD) code called Loci-STREAM to enable accurate, fast and robust simulations of unsteady multiphase flows such as combustion involving liquid-gas phases in liquid rocket injectors and solid-gas phases in solid rocket motors, and cryogenic cavitation in delivery systems of liquid rocket ...

    STTR Phase II 2010 National Aeronautics and Space Administration
  10. Advanced Unsteady Turbulent Combustion Simulation Capability for Space Propulsion Systems

    SBC: STREAMLINE NUMERICS, INC.            Topic: T901

    The innovation proposed here is a high performance, high fidelity simulation capability to enable accurate, fast and robust simulation of unsteady turbulent, reacting flows involving cryogenic propellants (such as LOX/LH2 and LOX/LCH4). The key features of this proposed capability are: (a) Hybrid RANS-LES (HRLES) methodology, and (b) flamelet modeling for turbulent combustion incorporated in a pr ...

    STTR Phase I 2010 National Aeronautics and Space Administration
US Flag An Official Website of the United States Government