You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. A Cost-effective, Large Scale and a Novel Synthetic Route for Quasi-2D “MXene� Phase

    SBC: TEXAS BIOCHEMICALS INC            Topic: AF18BT017

    MAX phases are an important class of layered machinable ternary carbides and nitrides that exhibit a unique combination of ceramic and metal properties. In 2011, a new family of two-dimensional (2D) transition metal carbides, nitrides, and carbonitrides – called MXenes – was discovered via selective etching of the ‘A’ element from MAX phases. Texas Biochemicals Inc., has ...

    STTR Phase I 2019 Department of DefenseAir Force
  2. Adaptive multi-sensor wide area situational awareness system- MP 85-12

    SBC: METRON INCORPORATED            Topic: AF12BT14

    ABSTRACT: Existing machine learning algorithms have difficulty using all available data about a problem. This STTR will develop a new algorithm that can make full use of all available data, whether that data is labeled or not, and even when some data types or data resolutions are not available during operation. BENEFIT: This STTR will develop a novel machine learning algorithm for reasoning abo ...

    STTR Phase I 2013 Department of DefenseAir Force
  3. Advanced Ferroelectric Polymers for High Energy Density Capacitors

    SBC: LYNNTECH INC.            Topic: AF09BT05

    To shrink the size and weight of pulsed power systems used by various military systems, the Air Force seeks to increase the energy density of their capacitors. Polymers/ceramics nanocomposites are promising materials for such capacitors. They combine the high dielectric constant of the ceramic and the high breakdown strength and processability of polymers. In collaboration with the University o ...

    STTR Phase I 2010 Department of DefenseAir Force
  4. Advanced Mediator Architectures for Efficient Electron Transfer in Enzymatic Fuel Cell Electrodes

    SBC: CFD RESEARCH CORPORATION            Topic: AF09BT03

    Our objective is to develop advanced mediator architectures for efficient electron transfer in enzymatic fuel cells (EFCs) for low power systems. The proposed EFC will leverage ongoing research at both CFDRC and Michigan State University to provide a fully-integrated lightweight, low-cost, manufacturable, and renewable power supply, for various military and civilian applications. EFC systems offer ...

    STTR Phase I 2010 Department of DefenseAir Force
  5. Advanced Memristor Materials and 3D Integration Architectures

    SBC: Privatran, LLC            Topic: AF09BT23

    PrivaTran proposes the use of newly-developed manufacturing methods that convert materials commonly found in conventional integrated circuit (IC) manufacturing into memristor devices with increased packing density and an advanced, three-dimensional (3D) architecture. The memristor devices can be formed in the interconnect layers of a conventional IC so that the area available for underlying transi ...

    STTR Phase I 2010 Department of DefenseAir Force
  6. Advanced Nonlinear Transmission Lines as High Power Microwave Sources

    SBC: HEM TECHNOLOGIES            Topic: AF09BT14

    Current high power microwave technology typically consists of electron beam sources which require high vacuum and large magnets. Such systems are typically difficult to use in the harsh environment associated with the modern battlefield. These systems are very sensitive to vibrations and typically can be easily damaged if dropped or launched from a weapon system. Nonlinear transmission lines, N ...

    STTR Phase I 2010 Department of DefenseAir Force
  7. Aerosol Jet Printing of Single-Wall Carbon Nanotube Transistors on Plastic Substrate

    SBC: OPTOMEC, INC.            Topic: AF09BT26

    Aerosol Jet printing is proposed as a method for printing large area, CNT-based transistor arrays on flexible substrate. The teaming relationship combines expertise in high resolution printing along with device and materials expertise. All semiconductor, dielectric, and conductive materials comprising the TFTs will be solution processed and printed with a single machine. This will lead to a cos ...

    STTR Phase I 2010 Department of DefenseAir Force
  8. A High Performance and Cost Effective Ultra High Performance Concrete

    SBC: i2C Solutions, LLC            Topic: AF12BT04

    ABSTRACT: Adversarial installations, such as those housing the means for nuclear weapons production, are increasingly being constructed in heavily fortified locations and often using ultra high performance concrete (UHPC) as the construction material. As such, the U.S. Air Force has considerable interest in further developments of ultra high performance concrete (UHPC) to maintain an advantage o ...

    STTR Phase I 2013 Department of DefenseAir Force
  9. A Multi-Modal State and Measurement Filter for RSO Tracking

    SBC: DECISIVE ANALYTICS CORPORATION            Topic: AF09BT11

    Joint Space Operations Center under the United States Strategic Command employs a worldwide network of 29 sensors, known as the Space Surveillance Network (SSN), to track more than 17,000 man-made objects in Earth orbit with sizes 10 centimeters or larger. Decisive Analytics Corporation and the University of Texas Austin Center for Space Research propose an innovate framework for solving stochast ...

    STTR Phase I 2010 Department of DefenseAir Force
  10. Automated In-situ Large-area De-processing of ICs with High Throughput

    SBC: MICRONET SOLUTIONS INC.            Topic: DMEA18B001

    The objective of this proposal is to demonstrate the feasibility of producing an automated delayering and imaging system with end point detection, material density detection with built in neural network error correction. This process, coined fast Automated Delayering-Image Capture System (ADICS) leverages off of the existing Pix2Net which is a proven automated imaging 3D microchip reconstruction ...

    STTR Phase I 2019 Department of DefenseDefense Microelectronics Activity
US Flag An Official Website of the United States Government