You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY21 is not expected to be complete until September, 2022.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. AC Plasma Sensor For High Enthalpy Hypersonic Test Facilities

    SBC: Spectral Energies, LLC            Topic: AF17AT002

    Spectral Energies and the University of Notre Dame is developing a new class of point-wise sensors for high-enthalpy conditions that rely on the use of a weakly ionized AC discharge between two electrodes as the main sensing element. The advantages of this approach include a native high bandwidth with a theoretical maximum in excess of 15 MHz and a simple mechanical design that is inherently robus ...

    STTR Phase I 2017 Department of DefenseAir Force
  2. Active Imaging through Fog

    SBC: SA Photonics, Inc.            Topic: N18AT021

    Active imaging systems are used to for imaging in degraded visual environments like that found in marine fog and other environments with a high level of attenuation and scattering from obscurants like fog, rain, smoke, and dust.These systems are still limited in range and resolution. SA Photonics is taking advantage of multiple image enhancement techniques, like wavelength tunability, pulse contro ...

    STTR Phase I 2018 Department of DefenseNavy
  3. Adaptive and Smart Materials for Advanced Manufacturing Methods

    SBC: Nextgen Aeronautics, Inc.            Topic: AF17AT018

    Additive manufacturing (AM) technologies covering a broad range of technologies and processes have been under continuous and accelerating development since the 80s. While there are still fundamental hurdles such as low production rates and small sizes, AM holds tremendous promise in terms of revolutionizing manufacturing. Recent trends include direct-printing and incorporating sensors and electr ...

    STTR Phase I 2017 Department of DefenseAir Force
  4. Adaptive Fleet Synthetic Scenario Research

    SBC: KAB LABORATORIES INC.            Topic: N10AT044

    Synthetic scenario-based training of Navy personnel in the use of Navy SIGINT/IO systems has helped to reduce training costs, and it has enabled the personnel to be trained in an environment that sufficiently approximates real-world situations that could not otherwise be accomplished within the class room. However, scenario development is highly complex and involves a great deal of human effo ...

    STTR Phase I 2010 Department of DefenseNavy
  5. Adaptive Learning for Stall Pre-cursor Identification and General Impending Failure Prediction

    SBC: Frontier Technology Inc.            Topic: N10AT008

    Frontier Technology, Inc. (FTI) and Northeastern University propose to investigate and develop an innovative approach to predict stall events of aircraft engines prior to occurrence and in sufficient time to allow the FADEC controller to adjust engine variables. The team will utilize vector quantization and neural network techniques to develop accurate models of engine behavior that will be used t ...

    STTR Phase I 2010 Department of DefenseNavy
  6. Adaptive Optics controlled nonlinear propagation of USLP

    SBC: Advanced Systems & Technologies Inc            Topic: N17AT024

    Filamentation of ultra-short laser pulse propagation in non-linear media offers significant potentials allowing to address numerous problems in military and commercial sectors. However, practical implementation of this requires an ability to control the USLP at its propagation through inhomogeneous media, like turbulent atmosphere. On the basis of our approach for combating turbulence effects on p ...

    STTR Phase I 2017 Department of DefenseNavy
  7. Adaptive Optics for Nonlinear Atmospheric Propagation of Laser Pulses

    SBC: TOYON RESEARCH CORPORATION            Topic: N17AT024

    Ultra-short pulse lasers have advantages over continuous-wave lasers for directed-energy applications due to the high peak powers that can be reached. Directed-energy weapons are profoundly limited by the aberrations caused by atmospheric turbulence and current adaptive optics can correct for these aberrations only when the propagation medium is reciprocal. Unfortunately, nonlinear effects in the ...

    STTR Phase I 2017 Department of DefenseNavy
  8. Additive Manufacturing of Metallic Materials for High Strain Rate Applications

    SBC: MRL MATERIALS RESOURCES LLC            Topic: MDA17T001

    Metallic additive manufacturing (AM) is an attractive technology for the production of lethality test articles due to the potential for significantly reduced lead time and manufacturing cost.However, in order to be effective in providing accurate lethality data, the properties of the AM material have to match closely the properties of conventionally manufactured alloys found in real threat targets ...

    STTR Phase I 2018 Department of DefenseMissile Defense Agency
  9. Additive Manufacturing of Multifunctional Nanocomposites

    SBC: Sciperio, Inc.            Topic: A13AT010

    Sciperio with team members Georgia Institute of Technology and Centecorp have teamed up to develop an Additive Manufacturing Composite using nano and micro fillers. The team will develop multi-scale models that are supported by experimental characterization for advanced 3D Printable materials. Inelastic response of high strength hierarchical structures composed of engineered materials and specif ...

    STTR Phase I 2013 Department of DefenseArmy
  10. Additive Manufacturing Sensor Fusion Technologies for Process Monitoring and Control.

    SBC: ARCTOS Technology Solutions, LLC            Topic: DLA18A001

    Universal Technology Corporation (UTC) has teamed with the University of Dayton Research Institute (UDRI), Stratonics, and Macy Consulting to demonstrate not only the transitionability into commercial systems, but also to develop the data analytics and monitoring and control requirements to extract the full value fromseveral sensors, including the Stratonics ThermaViz, acoustic and profilometry se ...

    STTR Phase I 2018 Department of DefenseDefense Logistics Agency
US Flag An Official Website of the United States Government