You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. SWAT- Scalable W(R)ubber through Advanced Technology

    SBC: EnergyEne Inc.            Topic: ST18C001

    Opportunity: Guayule, a US native plant, is the only alternate rubber crop with an established, mechanized, agronomic system. Problem: Low rubber yields and lack of effective resin and bagasse coproduct valorization, have prevented widespread adoption by American farmers and processors. Rubber is only made when the cytoplasmic monomer pool (isopentenyl-pyrophosphate; IPP) is larger than that requi ...

    STTR Phase I 2019 Department of DefenseDefense Advanced Research Projects Agency
  2. PathEngine: A Platform To Automate the Integration of Data To Predict Pathogenic Potential

    SBC: NETRIAS, LLC            Topic: ST18C002

    New pathogens, both naturally occurring and adversary-engineered, are increasingly likely to emerge and represent a significant and growing risk to global health and security. These new threats often have limited genetic similarity to prior known pathogens and cannot be identified through standard genetic tests. The application of machine learning algorithms to phenotypic tests to predict pathogen ...

    STTR Phase I 2019 Department of DefenseDefense Advanced Research Projects Agency
  3. Methane Harvesting for Seafloor Power Generation

    SBC: MARITIME APPLIED PHYSICS CORPORATION            Topic: ST18C005

    The US Navy, industry and the scientific community is using and developing a variety of AUVs, underwater sensors, and other systems that can be easily deployed and operated with minimal maintenance or recurring costs. A primary hindrance to the long-term implementation of these systems is the availability of in situ energy. The concepts presented herein focus on the harvesting of methane from seep ...

    STTR Phase I 2019 Department of DefenseDefense Advanced Research Projects Agency
  4. Additive Manufacturing Sensor Fusion Technologies for Process Monitoring and Control.

    SBC: ARCTOS Technology Solutions, LLC            Topic: DLA18A001

    Universal Technology Corporation (UTC) has teamed with the University of Dayton Research Institute (UDRI), Stratonics, and Macy Consulting to demonstrate not only the transitionability into commercial systems, but also to develop the data analytics and monitoring and control requirements to extract the full value fromseveral sensors, including the Stratonics ThermaViz, acoustic and profilometry se ...

    STTR Phase I 2018 Department of DefenseDefense Logistics Agency
  5. Additive Manufacturing Sensor Fusion Technologies for Process Monitoring and Control.

    SBC: X-Wave Innovations, Inc.            Topic: DLA18A001

    Additive Manufacturing (AM) is a modern and increasingly popular manufacturing process for metallic components, but suffers from well known problems of inconsistent quality of the finished product. Process monitoring and feedback control are therefore crucial research areas with a goal of solving this problem. To address this concern, X-wave Innovations, Inc. (XII) and the University of Dayton Res ...

    STTR Phase I 2018 Department of DefenseDefense Logistics Agency
  6. Assess Stability and Anti-Fragility of Dense Urban Terrains

    SBC: Cordillera Applications Group, Inc.            Topic: ST17C003

    The objective of this proposal is to examine the feasibility of defining and measuring key dimensions of an urban system to include its essential functions and networks, and whether they can be modelled in a computational framework for assessing robustness and resilience of DUTs (and their tipping points) under conditions of volatility and stress. This proposal will conduct a comprehensive review ...

    STTR Phase I 2018 Department of DefenseDefense Advanced Research Projects Agency
  7. Limit State Design of Composite Aerospace Structures

    SBC: CORNERSTONE RESEARCH GROUP INC            Topic: ST13A006

    Federal Aviation Administration Advisory Circular 20-107B provides guidance on the achievement of compliance with Title 14 of the Code of Federal Regulations regarding airworthiness type certification requirements for composite aircraft structures necessi

    STTR Phase I 2013 Department of DefenseDefense Advanced Research Projects Agency
  8. Modeling and Optimizing Turbines for Unsteady Flow

    SBC: Florida Turbine Technologies Inc.            Topic: ST13A005

    Pressure gain combustion has the potential to significantly improve the specific fuel consumption for gas turbine engines by realizing a pressure rise through the combustor as opposed to a pressure drop. One drawback to this form of combustion is the cycl

    STTR Phase I 2013 Department of DefenseDefense Advanced Research Projects Agency
  9. Automated Approaches to Cellular Engineering and Biomanufacturing

    SBC: Covitect Inc.            Topic: ST12B003

    Genome-scale predictable cellular design and engineering of biomanufacturing systems is the overarching a goal of DARPA's Living Foundry thrust and, if realized, will enable rapid engineering of living biosystems for a broad range of applications in biotechnology and pharmacology. However, constructing living cells with designed genome is not fully automated and is severely limited by inhere ...

    STTR Phase I 2013 Department of DefenseDefense Advanced Research Projects Agency
  10. Modeling Leadership Dynamics in Multinational Environments

    SBC: MacroCognition, LLC            Topic: ST092002

    We propose to develop a computational model of leadership designed to capture complex variables including cultural differences in leadership requirements along with task differences, primarily ill-defined goals, which pose leadership challenges. Rather than avoiding these kinds of complexity and developing a computational model that is unlikely to scale up, we believe there is more to be gained b ...

    STTR Phase I 2010 Department of DefenseDefense Advanced Research Projects Agency
US Flag An Official Website of the United States Government